Cancer immunotherapy trials are frequently characterized by a delayed treatment effect that violates the proportional hazards assumption. The log-rank test (LRT) suffers a substantial loss of statistical power under the nonproportional hazards model. Various group sequential designs using weighted LRTs (WLRTs) have been proposed under the fixed delayed treatment effect model. However, patients enrolled in immunotherapy trials are often heterogeneous, and the duration of the delayed treatment effect is a random variable. Therefore, we propose group sequential designs under the random delayed effect model using the random delayed distribution WLRT. The proposed group sequential designs are developed for monitoring the efficacy of the trial using the method of Lan-DeMets alpha-spending function with O'Brien-Fleming stopping boundaries or a gamma family alpha-spending function. The maximum sample size for the group sequential design is obtained by multiplying an inflation factor with the sample size for the fixed sample design. Simulations are conducted to study the operating characteristics of the proposed group sequential designs. The robustness of the proposed group sequential designs for misspecifying random delay time distribution and domain is studied via simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196386PMC
http://dx.doi.org/10.1080/10543406.2023.2296055DOI Listing

Publication Analysis

Top Keywords

group sequential
24
sequential designs
20
delayed treatment
16
random delayed
12
proposed group
12
cancer immunotherapy
8
immunotherapy trials
8
alpha-spending function
8
sample size
8
sequential
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!