Nucleoside and nucleobase transport and metabolism were measured in ATP-depleted and normal Aedes albopictus mosquito cells (line C-7-10) by rapid kinetic techniques. The cells possess a facilitated diffusion system for nucleosides, which in its broad substrate specificity and kinetic properties resembles that present in many types of mammalian cells. The Michaelis-Menten constant for uridine transport at 28 degrees C is about 180 microM. However, the nucleoside transporter of the mosquito cells is resistant to inhibition by nmolar concentrations of nitrobenzylthioinosine and the cells lack high affinity nitrobenzylthioinosine binding sites. The cells also possess an adenine transporter, which is distinct from the nucleoside transporter. They lack, however, a hypoxanthine transport system and are deficient in hypoxanthine phosphoribosyltransferase activity, which explains their failure to efficiently salvage hypoxanthine from the medium. The cells possess uridine and thymidine phosphorylase activities and, in contrast to cultured mammalian cells, efficiently convert uracil to nucleotides. An adenosine-resistant variant (CAE-3-6) of the C-7-10 cell line is devoid of significant nucleoside transport activity but transports adenine normally. Residual entry of various nucleosides into these cells and of hypoxanthine and cytosine into wild type and mutant cells is strictly non-mediated. The rate of permeation of various nucleosides and of hypoxanthine into the CAE-3-6 cells is related to their hydrophobicity. Uridine permeation into CAE-3-6 cells exhibits an activation energy of about 20 kcal/mol. At high uridine concentrations permeation is sufficiently rapid to partly overcome the limitation in nucleoside salvage imposed by the nucleoside transport defect in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(87)90440-8DOI Listing

Publication Analysis

Top Keywords

cells
14
cells possess
12
nucleoside
8
nucleoside nucleobase
8
nucleobase transport
8
transport metabolism
8
wild type
8
aedes albopictus
8
mosquito cells
8
mammalian cells
8

Similar Publications

In this study, we first analyzed data from 147 patients with solitary plasmacytomas treated at the Mayo Clinic between 2005 and 2022 and then expanded our investigation through a systematic review and meta-analysis of 62 studies, encompassing 3,487 patients from the years 1960 to 2022. Our findings reveal that patients with up to 10% clonal plasma cells in their bone marrow (BM), denoted as plasmacytoma +, had a significantly reduced median disease-free survival (DFS) of 15.7 months vs.

View Article and Find Full Text PDF

Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.

View Article and Find Full Text PDF

High Areal Loading Silicon Nanoparticle-Based Lithium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Electrical & Computer Engineering Department, Montana State University, Bozeman, Montana 59717, United States.

Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector.

View Article and Find Full Text PDF

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

The aggregation and accumulation of amyloid β 42 (Aβ42) peptides on the surface of brain cells is associated with Alzheimer's disease (AD); however, the underlying molecular mechanisms remain unclear. Herein, we used a unique brain-mimetic open system that continuously flows Aβ42 solution to analyze the initial aggregation and adsorptive nature of Aβ42 at physiological concentrations on the lipid membrane. The open system accelerated the adsorption and dimerization kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!