Induced crystallization for the simultaneous removal of hardness-iron-manganese in groundwater: An experimental study.

Environ Res

School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.

Published: March 2024

Hardness, iron, and manganese are common groundwater pollutants, that frequently surpass the established discharge standard concentrations. They can be effectively removed, however, through induced crystallization. This study has investigated the effectiveness of the simultaneous removal of hardness-iron-manganese and the crystallization kinetics of calcium carbonate during co-crystallization using an automatic potentiometric titrator. The impacts pH, dissolved oxygen (DO), and ion concentration on the removal efficiency of iron and manganese and their influence on calcium carbonate induced crystallization were assessed. The results suggest that pH exerts the most significant influence during the removal of hardness, iron, and manganese, followed by DO, and then the concentration of iron and manganese ions. The rate of calcium carbonate crystallization increased with pH, stabilizing at a maximum of 10 m/s. Iron and manganese can be reduced from an initial level of 4 mg/L to <0.3 mg/L and 0.1 mg/L, respectively. The removal rate of iron, however, was notably higher than that of manganese. The DO concentration correlates positively with the removal of iron and manganese but has minimal impact on the calcium carbonate crystallization process. During the removal of iron and manganese, competitive interactions occur with the substrate, as increases in the concentration of one ion will inhibit the removal rate of the other. Characterization of post-reaction particles and mechanistic analysis reveals that calcium is removed through the crystallization of CaCO, while most iron is removed through precipitation as FeO and FeOOH. Manganese is removed via two mechanisms, crystallization of manganese oxide (MnO/MnO) and precipitation. Overall, this research studies the removal efficiency of coexisting ions, the crystallization rate of calcium carbonate, and the mechanism of simultaneous removal, and provides valuable data to aid in the development of new removal techniques for coexisting ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117988DOI Listing

Publication Analysis

Top Keywords

iron manganese
20
induced crystallization
12
calcium carbonate
12
simultaneous removal
8
removal hardness-iron-manganese
8
hardness iron
8
iron
5
manganese
5
crystallization simultaneous
4
removal
4

Similar Publications

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of selected plant additives on changes in the content of fatty acids, lipid quality indicators and mineral composition of yogurts produced from cow's milk. The analysis included natural yogurts and yogurts enriched with 10% of chia seeds, hulled hemp seeds, quinoa seeds and oat bran. The fatty acid composition, the content of lipid quality indicators and the content of mineral components was varied in all analyzed yogurts.

View Article and Find Full Text PDF

The mechanical properties of a final product are directly influenced by the solidification process, chemical composition heterogeneity, and the thermal variables during solidification. This study aims to analyze the influence of solidification thermal variables on the microstructure, hardness, and phase distribution of the CuMn11Al8Fe3Ni3. The alloy was directionally and upward solidified from a temperature of 1250 °C.

View Article and Find Full Text PDF

Bioremediation of Heavy Metal-Contaminated Solution and Aged Refuse by Microbially Induced Calcium Carbonate Precipitation: Further Insights into .

Microorganisms

January 2025

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Recently, the ability of microbial-induced calcium carbonate precipitation (MICP) to remediate heavy metals has been widely explored. was selected to remediate heavy metal-contaminated solution and aged refuse, exploring the feasibility of bioremediation of heavy metals and analyzing the changes in heavy metal forms before and after bioremediation, as well as the mechanism of remediation. The results showed that achieved remediation rates of 95%, 84%, 97%, and 98% for Cd, Pb, Zn, and Cr (III) in contaminated solution, respectively.

View Article and Find Full Text PDF

This study investigates the seasonal variations in the elemental composition of five economically valuable fish species from Bozcaada, North Aegean: red seabream (), gilthead seabream (), saddled seabream (), white seabream (), and common dentex (), with a focus on both essential minerals and toxic metals. Fish samples ( = 10 per species per season) were collected across four seasons, and their weights and lengths were recorded. The concentrations of elements such as calcium, potassium, magnesium, phosphorus, copper, iron, manganese, zinc, chromium, nickel, selenium, cadmium, and mercury were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!