Nanoparticle-enhanced postbiotics: Revolutionizing cancer therapy through effective delivery.

Life Sci

Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. Electronic address:

Published: January 2024

Aim: Gastric cancer contributes to cancer-related fatalities. Conventional chemotherapy faces challenges due to severe adverse effects, prompting recent research to focus on postbiotics, which are safer biomolecules derived from nonviable probiotics. Despite promising in vitro results, efficient in vivo delivery systems remain a challenge. This study aimed to design a potential nanoparticle (NP) formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 (SGMNL-133) isolate to enhance its therapeutic efficacy in treating gastric cancer.

Main Methods: We successfully isolated GMNL-133 (SGMNL-133) by optimizing the lysate extraction and column elution processes for L. paracasei GMNL-133, resulting in substantial enhancement of its capacity to inhibit the proliferation of gastric cancer cells. Additionally, we developed a potential NP utilizing arginine-chitosan and fucoidan encapsulating SGMNL-133.

Key Findings: This innovative approach protected the SGMNL-133 from degradation by gastric acid, facilitated its penetration through the mucus layer, and enabled interaction with gastric cancer cells. Furthermore, in vivo experiments demonstrated that the encapsulation of SGMNL-133 in NPs significantly enhanced its efficacy in the treatment of orthotopic gastric tumors while simultaneously reducing tissue inflammation levels.

Significance: Recent research highlights postbiotics as a safe alternative, but in vivo delivery remains a challenge. Our study optimized the extraction of the lysate and column elution of GMNL-133, yielding SGMNL-133. We also developed NPs to protect SGMNL-133 from gastric acid, enhance mucus penetration, and improve the interaction with gastric cancer cells. This combination significantly enhanced drug delivery and anti-gastric tumor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.122379DOI Listing

Publication Analysis

Top Keywords

gastric cancer
16
cancer cells
12
gastric
8
vivo delivery
8
challenge study
8
paracasei gmnl-133
8
gmnl-133 sgmnl-133
8
column elution
8
gastric acid
8
interaction gastric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!