AI Article Synopsis

  • Recent advancements in remote sensing and deep learning have led to the development of the Hierarchical Concatenated Variational Autoencoder (HCVAE), which effectively monitors harmful algal blooms (HABs) by analyzing hyperspectral data in bodies of water such as Daecheong Lake in South Korea.
  • * HCVAE utilizes a multi-level hierarchical approach that allows for efficient extraction of key spectral features, enabling accurate estimation of chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations with high agreement to measured values.
  • * The study showcases HCVAE's ability to create spatial distribution maps of algal pigments using drone technology, thereby improving near-real-time monitoring and assessment of HABs.

Article Abstract

Recent advances in remote sensing techniques provide a new horizon for monitoring the spatiotemporal variations of harmful algal blooms (HABs) using hyperspectral data in inland water. In this study, a hierarchical concatenated variational autoencoder (HCVAE) is proposed as an efficient and accurate deep learning (DL) based bio-optical model. To demonstrate its usefulness in retrieving algal pigments, the HCVAE is applied to bloom-prone regions in Daecheong Lake, South Korea. By abstracting the similarity between highly related features using layer-wise clique-based latent-feature extraction, HCVAE reduces the computational loads in deriving outputs while preventing performance degradation. Graph-based clique-detection uses information theory-based criteria to group the related reflectance spectra. Consequently, six latent features were extracted from 79 spectral bands to consist of a multilevel hierarchy of HCVAE that can simultaneously estimate concentrations of chlorophyll-a (Chl-a) and phycocyanin (PC). Despite the parsimonious model architecture, the Chl-a and PC concentrations estimated by HCVAE closely agree with the measured concentrations, with test R values of 0.76 and 0.82, respectively. In addition, spatial distribution maps of algal pigments obtained from HCVAE using drone-borne reflectance successfully capture the blooming spots. Based on its multilevel hierarchical architecture, HCVAE can provide the importance of latent features along with their individual wavelengths using Shapley additive explanations. The most important latent features covered the spectral regions associated with both Chl-a and PC. The lightweight neural network DNN, which uses only the spectral bands of highest importance in latent-feature extraction, performed comparably to HCVAE. The study results demonstrate the utility of the multilevel hierarchical architecture as a comprehensive assessment model for near-real-time drone-borne sensing of HABs. Moreover, HCVAE is applicable to a wide range of environmental big data, as it can handle numerous sets of features.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169540DOI Listing

Publication Analysis

Top Keywords

latent features
12
hcvae
9
drone-borne sensing
8
algal pigments
8
pigments hcvae
8
latent-feature extraction
8
spectral bands
8
multilevel hierarchical
8
hierarchical architecture
8
features
5

Similar Publications

Background: Severe or recurring major depression is associated with increased adverse childhood experiences (ACEs), heightened atherogenicity, and immune-linked neurotoxicity (INT). Nevertheless, the interconnections among these variables in outpatient major depression (OMDD) have yet to be determined. We aim to determine the correlations among INT, atherogenicity, and ACEs in OMDD patients compared to normal controls.

View Article and Find Full Text PDF

An instructional emperor pigeon optimization (IEPO) based DeepEnrollNet for university student enrolment prediction and retention recommendation.

Sci Rep

December 2024

Department of Information Systems, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.

Academic institutions face increasing challenges in predicting student enrollment and managing retention. A comprehensive strategy is required to track student progress, predict future course demand, and prevent student churn across various disciplines. Institutions need an effective method to predict student enrollment while addressing potential churn.

View Article and Find Full Text PDF

Deep Neural Networks for Accurate Depth Estimation with Latent Space Features.

Biomimetics (Basel)

December 2024

School of Artificial Intelligence, Tongmyong University, Busan 48520, Republic of Korea.

Depth estimation plays a pivotal role in advancing human-robot interactions, especially in indoor environments where accurate 3D scene reconstruction is essential for tasks like navigation and object handling. Monocular depth estimation, which relies on a single RGB camera, offers a more affordable solution compared to traditional methods that use stereo cameras or LiDAR. However, despite recent progress, many monocular approaches struggle with accurately defining depth boundaries, leading to less precise reconstructions.

View Article and Find Full Text PDF

An Unsupervised Feature Extraction Method based on CLSTM-AE for Accurate P300 Classification in Brain-Computer Interface Systems.

J Biomed Phys Eng

December 2024

Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Background: The P300 signal, an endogenous component of event-related potentials, is extracted from an electroencephalography signal and employed in Brain-computer Interface (BCI) devices.

Objective: The current study aimed to address challenges in extracting useful features from P300 components and detecting P300 through a hybrid unsupervised manner based on Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM).

Material And Methods: In this cross-sectional study, CNN as a useful method for the P300 classification task emphasizes spatial characteristics of data.

View Article and Find Full Text PDF

Introduction: Functional magnetic resonance imaging (fMRI) data is highly complex and high-dimensional, capturing signals from regions of interest (ROIs) with intricate correlations. Analyzing such data is particularly challenging, especially in resting-state fMRI, where patterns are less identifiable without task-specific contexts. Nonetheless, interconnections among ROIs provide essential insights into brain activity and exhibit unique characteristics across groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!