Doxorubicin, an anthracycline chemotherapeutic agent, elicits a deleterious cardiotoxicity known as doxorubicin-induced cardiomyopathy (DIC) that circumscribes its chemotherapy utility for malignancies. Recent empirical evidence implicates ferroptosis, an iron-dependent form of regulated cell death, as playing a pivotal role in the pathogenesis of DIC. We postulated that anti-ferroptosis agents may constitute a novel therapeutic strategy for mitigating DIC. To test this hypothesis, we engineered baicalin-peptide supramolecular self-assembled nanofibers designed to selectively target the angiotensin II type I receptor (AT1R), which is upregulated in doxorubicin-damaged cardiomyocytes. This enabled targeted delivery of baicalin, a natural antioxidant compound, to inhibit ferroptosis in the afflicted myocardium. In vitro, the nanofibers ameliorated cardiomyocyte death by attenuating peroxide accumulation and suppressing ferroptosis. In a murine model of DIC, AT1R-targeted baicalin delivery resulted in efficacious cardiac accumulation and superior therapeutic effects compared to systemic administration. This investigation delineates a promising framework for developing targeted therapies that alleviate doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis pathway in cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.12.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!