Background: Monocular depth estimation plays a fundamental role in clinical endoscopy surgery. However, the coherent illumination, smooth surfaces, and texture-less nature of endoscopy images present significant challenges to traditional depth estimation methods. Existing approaches struggle to accurately perceive depth in such settings.
Method: To overcome these challenges, this paper proposes a novel multi-scale residual fusion method for estimating the depth of monocular endoscopy images. Specifically, we address the issue of coherent illumination by leveraging image frequency domain component space transformation, thereby enhancing the stability of the scene's light source. Moreover, we employ an image radiation intensity attenuation model to estimate the initial depth map. Finally, to refine the accuracy of depth estimation, we utilize a multi-scale residual fusion optimization technique.
Results: To evaluate the performance of our proposed method, extensive experiments were conducted on public datasets. The structural similarity measures for continuous frames in three distinct clinical data scenes reached impressive values of 0.94, 0.82, and 0.84, respectively. These results demonstrate the effectiveness of our approach in capturing the intricate details of endoscopy images. Furthermore, the depth estimation accuracy achieved remarkable levels of 89.3 % and 91.2 % for the two models' data, respectively, underscoring the robustness of our method.
Conclusions: Overall, the promising results obtained on public datasets highlight the significant potential of our method for clinical applications, facilitating reliable depth estimation and enhancing the quality of endoscopy surgical procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107850 | DOI Listing |
Objectives: Squamous cell carcinoma of the anal canal (SCCA) is a rare condition. Standard treatment includes chemoradiotherapy, with surgical treatment reserved for limited cases. In the future, the decrease in surgical frequency makes it more difficult to pathologically assess the depth of tumor invasion and lymph node status; therefore, those studies based on relatively recent surgical cases may offer valuable insights into diagnosing and treating SCCA.
View Article and Find Full Text PDFParasit Vectors
January 2025
Faculty of Information Technology, Mutah University, Mutah, Jordan.
Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
BP Australia Pty Ltd, Melbourne, Victoria 3000, Australia.
Natural Source Zone Deletion (NSZD) is a viable long-term management option for sites impacted by petroleum hydrocarbon fuels. NSZD rate estimation methods for petroleum mass losses often use soil gas gradients of oxygen, carbon dioxide, methane or vapour concentrations through the vadose zone. Seeking greater efficiencies, we investigated if existing short-screened wells are reliable for representative sampling of soil gases in a vadose zone undergoing NSZD.
View Article and Find Full Text PDFJ Surg Res
January 2025
Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas. Electronic address:
International medical graduates (IMGs) have been integral to the United States (US) healthcare system and have helped tackle physician shortages for over a century. Current data suggest that by 2030, almost half the states will suffer from physician shortage and estimate a deficit of almost 139,000 physician jobs nationally. These numbers raise concern and call for innovative strategies to mitigate the potential problem.
View Article and Find Full Text PDFNanotechnology
January 2025
Electronic Sci.&Eng., Xi'an Jiaotong University, 28 Xianning West Road,Beilin District, Xi 'an, Shaanxi Province, China, Xi'an, 710049, CHINA.
The accurate estimation of the temperature distribution of the GaN based power devices and optimization of the device structure is of great significance to possibly solve the self-heating problem, which hinders the further enhancement of the device performances. We present here the operando temperature measurement with high spatial resolution using Raman spectroscopy of AlGaN/GaN high electron mobility transistors (HEMTs) with different device structures and explore the optimization of the device thermal design accordingly. The lateral and depth temperature distributions of the single-finger HEMT were characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!