Lithium-metal batteries (LMB) employing cobalt-free layered-oxide cathodes are a sustainable path forward to achieving high energy densities, but these cathodes exhibit substantial transition-metal dissolution during high-voltage cycling. While transition-metal crossover is recognized to disrupt solid-electrolyte interphase (SEI) formation on graphite anodes, experimental evidence is necessary to demonstrate this for lithium-metal anodes. In this work, advanced high-resolution 3D chemical analysis is conducted with time-of-flight secondary-ion mass spectrometry (TOF-SIMS) to establish spatial correlations between the transition metals and electrolyte decomposition products found on cycled lithium-metal anodes. Insights into the localization of various chemistries linked to crucial processes that define LMB performance, such as lithium deposition, SEI growth, and transition-metal deposition are deduced from a precise elemental and spatial analysis of the SEI. Heterogenous transition-metal deposition is found to perpetuate both heterogeneous SEI growth and lithium deposition on lithium-metal anodes. These correlations are confirmed across various lithium-metal anodes that are cycled with different cobalt-free cathodes and electrolytes. An advanced electrolyte that is stable to higher voltages is shown to minimize transition-metal crossover and its effects on lithium-metal anodes. Overall, these results highlight the importance of maintaining uniform SEI coverage on lithium-metal anodes, which is disrupted by transition-metal crossover during operation at high voltages.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202311573DOI Listing

Publication Analysis

Top Keywords

lithium-metal anodes
24
transition-metal crossover
16
solid-electrolyte interphase
8
mass spectrometry
8
lithium deposition
8
sei growth
8
transition-metal deposition
8
transition-metal
7
lithium-metal
7
anodes
7

Similar Publications

Organic/Inorganic Hybrid Cross-Linked Gel Polymer Electrolyte for Optimizing the Solvation Structure of Lithium Ions.

ACS Appl Mater Interfaces

January 2025

Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, PR China.

Lithium metal electrodes inevitably lead to the decomposition of the liquid electrolyte and lithium dendrite growth, both of which result in the formation of unstable solid electrolyte intermediates (SEIs). Gel polymer electrolytes (GPEs) are expected to replace liquid electrolytes for optimizing the SEI issues of lithium metal. Herein, a cellulose-based gel electrolyte cross-linked by thiol-modified polyhedral oligomeric silsesquioxane (thiol-modified-POSS) was successfully obtained based on "thiol-ene" click chemistry.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

Dual functional coordination interactions enable fast polysulfide conversion and robust interphase for high-loading lithium-sulfur batteries.

Mater Horiz

January 2025

National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.

View Article and Find Full Text PDF

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!