The inability to process many covalent organic frameworks (COFs) as thin films plagues their widespread utilization. Herein, a vapor-phase pathway for the bottom-up synthesis of a class of porphyrin-based COFs is presented. This approach allows integrating electrocatalysts made of metal-ion-containing COFs into the electrodes' architectures in a single-step synthesis and deposition. By precisely controlling the metal sites at the atomic level, remarkable electrocatalytic performance is achieved, resulting in unprecedentedly high mass activity values. How the choice of metal atoms, i.e., cobalt and copper, can determine the catalytic activities of POR-COFs is demonstrated. The theoretical data proves that the Cu site is highly active for nitrate conversion to ammonia on the synthesized COFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202309302 | DOI Listing |
J Chem Theory Comput
January 2025
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.
View Article and Find Full Text PDFChem Soc Rev
January 2025
College of Chemistry, Nankai University, Tianjin 300071, China.
Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed.
View Article and Find Full Text PDFNanoscale
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
Dynamic covalent polymer networks (DCPN) provide an important solution to the challenging recyclability of thermoset elastomers. However, dynamic bonds exhibit relatively weak bond energies, considerably decreasing the mechanical properties of DCPN. Herein, a novel reinforcement strategy for DCPN involving the in situ formation of supramolecular organic nanofillers through asynchronous polymerization is proposed.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
A vinylene-linked DPP-COF with an ultra-narrow bandgap of 1.06 eV was reported. This COF demonstrates high chemical stability and significant charge transfer properties, and was applied to the photooxidation of sulfides and tetrahydroisoquinolines, exhibiting exceptional photoactivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!