Conjugated Phosphonic Acids Enable Robust Hole Transport Layers for Efficient and Intrinsically Stable Perovskite Solar Cells.

Adv Mater

College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Key Laboratory of High-Performance Ceramics Fibers (Ministry of Education), Xiamen University, Xiamen, 361005, China.

Published: April 2024

High efficiency and long-term stability are the prerequisites for the commercialization of perovskite solar cells (PSCs). However, inadequate and non-uniform doping of hole transport layers (HTLs) still limits the efficiency improvements, while the intrinsic instability of HTLs caused by ion migration and accumulation is difficult to be addressed by external encapsulation. Here it is shown that the addition of a conjugated phosphonic acid (CPA) to the Spiro-OMeTAD benchmark HTL can greatly enhance the device efficiency and intrinsic stability. Featuring an optimal diprotic-acid structure, indolo(3,2-b)carbazole-5,11-diylbis(butane-4,1-diyl) bis(phosphonic acid) (BCZ) is developed to promote morphological uniformity and mitigate ion migration across both perovskite/HTL and HTL/Ag interfaces, leading to superior charge conductivity, reinforced ion immobilization, and remarkable film stability. The dramatically improved interfacial charge collection endows BCZ-based n-i-p PSCs with a champion power conversion efficiency of 24.51%. More encouragingly, the BCZ-based devices demonstrate remarkable stability under harsh environmental conditions by retaining 90% of initial efficiency after 3000 h in air storage. This work paves the way for further developing robust organic HTLs for optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202308969DOI Listing

Publication Analysis

Top Keywords

conjugated phosphonic
8
hole transport
8
transport layers
8
perovskite solar
8
solar cells
8
ion migration
8
efficiency
5
phosphonic acids
4
acids enable
4
enable robust
4

Similar Publications

While self-assembled material based inverted perovskite solar cells have surpassed power conversion efficiencies of 26%, enhancing their performance in large-area configurations remains a significant challenge. In this work, we report a self-assembled material based hole-selective layer 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid, with a π-expanded conjugation. The enhanced intermolecular π-π interactions facilitate the self-assembly of 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid molecules to form an ordered bilayer with a hydrophilic surface, which passivates the buried perovskite interface defect and enables high-quality and large-area perovskite preparation, while simultaneously enhancing interfacial charge extraction and transport.

View Article and Find Full Text PDF

Harnessing Oxetane and Azetidine Sulfonyl Fluorides for Opportunities in Drug Discovery.

J Am Chem Soc

December 2024

Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.

Four-membered heterocycles such as oxetanes and azetidines represent attractive and emergent design options in medicinal chemistry due to their small and polar nature and potential to significantly impact the physiochemical properties of drug molecules. The challenging preparation of these derivatives, especially in a divergent manner, has severely limited their combination with other medicinally and biologically important groups. Consequently, there is a substantial demand for mild and effective synthetic strategies to access new oxetane and azetidine derivatives and molecular scaffolds.

View Article and Find Full Text PDF

Unveiling the Long-Awaited Aldehyde Intermediate in Oxidative Dephosphorylation: A Unique Approach to Access Useful Carboxaldehydes.

Chemistry

November 2024

Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad, 500078, India.

Oxidative dephosphorylation reactions usually generate symmetrically substituted alkenes from organophosphonates. Even the ubiquitous presence of oxygen can produce such alkenes inadvertently as a side product in small amounts from Wittig/Horner-Wadsworth-Emmons (HWE) reactions. So far, aldehydes have been expected to be the on-pathway intermediate since their discovery, but there was no substantial experimental evidence to support this.

View Article and Find Full Text PDF

An efficient Mn(III)-promoted phosphorylation of dehydroalanine (Dha) has been developed to give unusual α-amino acids bearing phosphonates/phosphine oxides and β-vinyl phosphonates/phosphinates depending on N-protection of amino acid. N,N-diprotected dehydroalanine reacted with H-phosphonates and H-phosphine oxides to give structurally diverse phosphorylated α-amino acids through conjugate addition of phosphorous radical generated by Mn(OAc).2HO.

View Article and Find Full Text PDF

7-Hydroxycoumarin and its conjugated metabolites interact with organic anion transporters 1 and 3 in vitro and in vivo.

Chem Biol Interact

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. Electronic address:

7-Hydroxycoumarin (7-HC) is a natural coumarin compound rich in Chinese herbal medicines and has various pharmacological activities. After oral administration of 7-HC in rodents, its conjugated metabolites 7-hydroxycoumarin-β-D-glucuronide (7-HCG) and 7-hydroxycoumarin sulfate (7-HCS), exhibit high systemic exposure and urinary excretion. Organic anion transporters 1 and 3 (OAT1 and OAT3), mainly expressed in the proximal renal tubules, play an important role in drug-drug interactions and drug-induced kidney injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!