The interface loss between the active layer and the hole transport layer (HTL) of lead sulfide colloidal quantum dot (PbS-CQD) solar cells is a significant factor influencing the efficiency improvement of PbS colloidal quantum dot solar cells (PbS-CQDSCs). Currently, the most advanced solar cells adopt organic P-type HTLs (PbS-EDT) via solid-state ligand exchange with 1,2-ethanedithiol (EDT) on the CQD top active layer. However, EDT is unable to altogether remove the initial ligand oleic acid from the quantum dot surface, and its high reactivity leads to cracks in the HTL film caused by volume contractions, which inevitably results in significant loss. These flaws prompted this research to develop a method involving hybrid organic ligand exchange using 3-mercaptopropionic acid (MPA) and 1,2-EDT (PbS-Hybrid) to overcome these drawbacks of loss. The results indicated that the new exchange strategy improved the quality of the HTL film and benefited from the enhanced passivation of the quantum dot surface and better alignment of energy levels, and the average of PbS-Hybrid devices is increased by approximately 25 mV compared to control devices. With the enhanced , the average power conversion efficiency (PCE) of the devices is improved by 10%, with the highest PCE reaching 13.24%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16599 | DOI Listing |
Biomed Phys Eng Express
January 2025
Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China, Xi'an, 710049, CHINA.
The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
Quantum technology exploits fragile quantum electronic phenomena whose energy scales demand ultra-low electron temperature operation. The lack of electron-phonon coupling at cryogenic temperatures makes cooling the electrons down to a few tens of millikelvin a non-trivial task, requiring extensive efforts on thermalization and filtering high-frequency noise. Existing techniques employ bulky and heavy cryogenic metal-powder filters, which prove ineffective at sub-GHz frequency regimes and unsuitable for high-density quantum circuits such as spin qubits.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.
View Article and Find Full Text PDFHeliyon
January 2025
Transmission Electronic Microscopy Laboratory, Electronic Microscopy Unit, Department of Biology, University of Cauca, Popayán, 190002, Colombia.
A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.
View Article and Find Full Text PDFMethods Appl Fluoresc
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.
Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!