With the miniaturization of multilayer ceramic capacitors (MLCCs) and the increase of the electric field on a single dielectric layer, dielectric constant DC-bias stability and reliability have gradually aroused attention in the advanced electronics industry. In this study, MLCCs with outstanding DC-bias stability and reliability were prepared by using dielectric ceramic optimization and electrode optimization strategies. The effect of the Dy-Y doping concentration on the microstructure, dielectric properties, and reliability of BaTiO-based ceramics was investigated. The shell ratio and effective shell doping concentration of the core-shell structure in ceramic grains play important roles in defects and electrical performances. The ceramic with appropriate doping contents shows a dielectric constant of 1800 and a dielectric constant change rate of -17% under a DC field of 4 kV/mm, which was fabricated into prototype MLCCs with different Ni electrodes. MLCCs exhibit outstanding DC-bias stability with a -28% degradation in the dielectric constant under a DC field of 4 kV/mm while possessing a dielectric constant of 2300 and satisfying the EIA X7S specification. Additionally, it was discovered that MLCCs prepared by using fine-size Ni particle electrodes have low electrode roughness and high interfacial Schottky barriers, resulting in better reliability. This study provides promising candidate materials and theoretical references for high-end and high DC-bias stability MLCCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!