The use of extracellular matrix (ECM)-derived hydrogels in tissue engineering has become increasingly popular, as they can mimic cells' natural environment in vitro. However, maintaining the native biochemical content of the ECM, achieving mechanical stability, and comprehending the impact of the decellularization process on the mechanical properties of the ECM hydrogels are challenging. Here, a pipeline for decellularization of bovine lung tissue using two different protocols, downstream characterization of the effectiveness of decellularization, fabrication of reconstituted decellularized lung ECM hydrogels and assessment of their mechanical and cytocompatibility properties were described. Decellularization of the bovine lung was pursued using a physical (freeze-thaw cycles) or chemical (detergent-based) method. Hematoxylin and Eosin staining was performed to validate the decellularization and retention of major ECM components. For the evaluation of residual collagen and sulfated glycosaminoglycan (sGAG) content within the decellularized samples, Sirius red and Alcian blue staining techniques were employed, respectively. Mechanical properties of the decellularized lung ECM hydrogels were characterized by oscillatory rheology. The results suggest that decellularized bovine lung hydrogels can provide a reliable organotypic alternative to commercial ECM products by retaining most native ECM components. Furthermore, these findings reveal that the decellularization method of choice significantly affects gelation kinetics as well as the stiffness and viscoelastic properties of resulting hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65768 | DOI Listing |
Biofabrication
December 2024
Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.
Recent studies have shown promising results using decellularized extracellular matrix (dECM) matrikines-based hydrogel as attractive strategies for preventing and alleviating fibrosis.Porcine lung decellularization and pepsin digestion were used to prepare the lung dECM hydrogel. Proteomic analysis revealed that the lung dECM hydrogel was enriched in glycoproteins, collagens, laminins, fibrinogen, held receptors, and bound growth factors.
View Article and Find Full Text PDFACS Nano
November 2024
Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.
Overexpression and remodeling of the extracellular matrix (ECM) in cancer and other diseases may significantly reduce the ability of nanoparticles to reach target sites, preventing the effective delivery of therapeutic cargo. Here, we evaluate how tissue-specific properties of the ECM affect nanoparticle diffusion using fluorescence video microscopy and cellular uptake via flow cytometry. In addition, we determined how poly(ethylene glycol) (PEG) chain length and branching influence the ability of PEGylated nanoparticles to overcome the ECM barrier from different tissues.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2024
Department of Biomedical and Translational Sciences, Eastern Virginia Medical School, Norfolk, VA, United States.
Macromol Biosci
October 2024
School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran.
Mater Today Bio
December 2024
Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China.
drug screening endeavors to replicate cellular states closely resembling those encountered , thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells . This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!