Exogenous stem cell therapy and endogenous repair has shown great potential in intervertebral disc regeneration. However, limited nutrients and accumulation of lactate largely impair the survival and regenerative capacity of implanted stem cells and endogenous nucleus pulposus cells (NPCs). Herein, an injectable hydrogel microsphere (LMGDNPs) have been developed by immersing lactate oxidase (LOX)-manganese dioxide (MnO ) nanozyme (LM) into glucose-enriched decellularized nucleus pulposus hydrogel microspheres (GDNPs) through a microfluidic system. LMGDNPs showed a delayed release profile of LOX and satisfactory enzymatic capacity in consuming lactate. Mesenchymal stem cells (MSCs) plated on LMGDNPs exhibited better cell viability than cells on GelMA and decellularized nucleus pulposus microspheres (DNP) and showed a obviously increased NPCs phenotype. LMGDNPs prevented MSCs and NPCs death and promoted extracellular matrix synthesis by exhausting lactate. It is determined that LMGDNPs promoted NPCs autophagy by activating transforming growth factor β2 overlapping transcript 1 (TGFB2-OT1), relying on the nanozyme. MSCs-loaded LMGDNPs largely preserved disc hydration and alleviated matrix degradation in vivo. Summarily, LMGDNPs promoted cell survival and matrix regeneration by providing a nutrient supply, exhausting lactate, and activating autophagy via TGFB2-OT1 and its downstream pathway and may serve as an ideal delivery system for exogenous stem cell therapy and endogenous repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933624 | PMC |
http://dx.doi.org/10.1002/advs.202304761 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:
Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China.
Sci Rep
January 2025
Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyu Mountain South Road, Urumqi City, 830054, Xinjiang Province, China.
Intervertebral disc degeneration (IDD) is a degenerative condition associated with impaired mitophagy. MANF has been shown to promote mitophagy in murine kidneys; however, its role in IDD remains unexplored. This study aimed to elucidate the mechanism by which MANF influences IDD development through the regulation of mitophagy.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Orthopaedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China. Electronic address:
Intervertebral disc degeneration (IVDD) is a chronic degenerative disease with a complex pathophysiological mechanism. Increasing evidence suggests that the NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated pyroptosis of nucleus pulposus cells (NPCs) plays a crucial role in the pathological progression of IVDD. Pyroptosis is a novel form of programmed cell death characterized by the formation of plasma membrane pores by gasdermin family proteins, leading to cell swelling, membrane rupture, and the release of inflammatory cytokines, which trigger an inflammatory response.
View Article and Find Full Text PDFBiomaterials
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China. Electronic address:
Intervertebral disc degeneration (IDD) is a deleterious condition driven by localized inflammation and the associated disruption of the normal homeostatic balance between anabolism and catabolism, contributing to progressive functional abnormalities within the nucleus pulposus (NP). Despite our prior evidence demonstrating that a miR-21 inhibitor can have regenerative effects that counteract the progression of IDD, its application for IDD treatment remains limited by the inadequacy of current local delivery systems. Here, an injectable tannic acid (TA)-loaded hydrogel gene delivery system was developed and used for the encapsulation of a multifunctional mitochondria-protecting gene nanocarrier (PHs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!