Breast cancer (BC) has emerged as an extremely destructive malignancy, causing significant harm to female patients and society at large. Proteomic research holds great promise for early diagnosis and treatment of diseases, and the integration of proteomics with genomics can offer valuable assistance in the early diagnosis, treatment, and improved prognosis of BC patients. In this study, we downloaded breast cancer protein expression data from The Cancer Genome Atlas (TCGA) and combined proteomics with genomics to construct a proteomic-based prognostic model for BC. This model consists of nine proteins (HEREGULIN, IDO, PEA15, MERIT40_pS29, CIITA, AKT2, CD171 DVL3, and CABL9). The accuracy of the model in predicting the survival prognosis of BC patients was further validated through risk curve analysis, survival curve analysis, and independent prognostic analysis. We further confirmed the impact of differential expression of these nine key proteins on overall survival in BC patients, and the differential expression of the key proteins and their encoding genes was validated using immunohistochemical staining. Enrichment analysis revealed functional associations primarily related to PPAR signaling pathway, steroid hormone metabolism, chemokine signaling pathway, DNA conformation changes, immunoglobulin production, and immunoglobulin complex in the high- and low-risk groups. Immune infiltration analysis revealed differential expression of immune cells between the high- and low-risk groups, providing a theoretical basis for subsequent immunotherapy. The model constructed in this study can predict the survival of BC patients, and the identified key proteins may serve as biomarkers to aid in the early diagnosis of BC. Enrichment analysis and immune infiltration analysis provide a necessary theoretical basis for further exploration of the molecular mechanisms and subsequent immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748720 | PMC |
http://dx.doi.org/10.1155/2023/1738750 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!