Purpose: Triphenyl phosphate (TPHP) is a widely used organophosphate flame retardant, which can be transformed in vivo into diphenyl phosphate (DPHP) and 4-hydroxyphenyl phosphate (diphenyl) ester (OH-TPHP) through biotransformation process. Accumulation of TPHP and its derivatives in biological tissues makes it necessary to investigate their toxicity and molecular mechanism.
Methods: The present study evaluated the cellular effects of TPHP, DPHP, and OH-TPHP on cell survival, cell membrane damage, oxidative damage, and cell apoptosis using HeLa cells as in vitro model. RNA sequencing and bioinformatics analysis were conducted to monitor the differently expressed genes, and then RT-qPCR and Western bolt were used to identify potential molecular mechanisms and key hub genes.
Results: Results showed that OH-TPHP had the most significant cytotoxic effect in HeLa cells, followed by TPHP; and no significant cytotoxic effects were observed for DPHP exposure within the experimental concentrations. Biological function enrichment analysis suggested that TPHP and OH-TPHP exposure may induce endoplasmic reticulum stress (ERS) and cell apoptosis. The nodes filtering revealed that ERS and apoptosis related genes were involved in biological effects induced by TPHP and OH-TPHP, which may be mediated through the eukaryotic translation initiation factor 2α/activating transcription factor 4 (ATF4)/ATF3- CCAAT/ enhancer-binding protein homologous protein (CHOP) cascade pathway and death receptor 5 (DR5) /P53 signaling axis.
Conclusion: Above all, these findings indicated that ERS-mediated apoptosis might be one of potential mechanisms for cytotoxicity of TPHP and OH-TPHP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734570 | PMC |
http://dx.doi.org/10.1093/toxres/tfad110 | DOI Listing |
Toxicol Res (Camb)
December 2023
Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Xueyuan Road 117, Hangzhou 310012, PR China.
Purpose: Triphenyl phosphate (TPHP) is a widely used organophosphate flame retardant, which can be transformed in vivo into diphenyl phosphate (DPHP) and 4-hydroxyphenyl phosphate (diphenyl) ester (OH-TPHP) through biotransformation process. Accumulation of TPHP and its derivatives in biological tissues makes it necessary to investigate their toxicity and molecular mechanism.
Methods: The present study evaluated the cellular effects of TPHP, DPHP, and OH-TPHP on cell survival, cell membrane damage, oxidative damage, and cell apoptosis using HeLa cells as in vitro model.
Environ Res
March 2024
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Soil constituents may play an important role in peroxydisulfate (PDS)-based oxidation of organic contaminants in soil. Iron-containing minerals (Fe-minerals) have been found to promote PDS activation for organics degradation. Our study found that ascorbic acid (HA) could enhance PDS activation by soil Fe-minerals for triphenyl phosphate (TPHP) degradation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
June 2023
State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China. Electronic address:
Triphenyl phosphate (TPHP) has been widely used as flame retardants and been detected with increasing frequency in environment. TPHP can transform into mono-hydroxylated phosphate (OH-TPHP) and diester diphenyl phosphate (DPHP) through biotransformation. So far, information on the cytotoxicity and molecular regulatory mechanisms of TPHP metabolites are still limit.
View Article and Find Full Text PDFChem Res Toxicol
June 2020
Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States.
Isopropylated and -butylated triarylphosphate esters (ITPs and TBPPs, respectively) are plasticizers and flame retardants that are ubiquitous in indoor environments; however, no studies to date have characterized their metabolism. Using human liver subcellular S9 fractions, phase I and II metabolism of triphenyl phosphate (TPHP), 4--butylphenyl diphenyl phosphate (4tBPDPP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP), and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) was investigated at 1 and 10 μM doses. Parent depletion and the formation of known or suspected metabolites (e.
View Article and Find Full Text PDFSci Total Environ
April 2020
Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
Triphenyl phosphate (TPHP) was frequently detected in various environment, which has caused wide attention out of its adverse effects on organisms. Hence, an effective and reasonable method is in urgent demand for removing TPHP. In this study, microbial consortium GYY with efficient capacity to degrade TPHP has been isolated, which could degrade 92.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!