Backgrouds: As a human carcinogen, radon and its progeny are the second most important risk factor for lung cancer after smoking. The tumor suppressor gene, , is reported to play an important role in the maintenance of mitochondrial function. In this work, we investigated the association between p53 and p53-responsive signaling pathways and radon-induced carcinogenesis.
Methods: After repeated radon exposure, the malignant characteristics, cell cycle arrest, cell apoptotic rate, adenosine triphosphate (ATP) content, reactive oxygen species (ROS) level, mitochondrial DNA (mtDNA) copy number as well as indicative biomarkers involved in mitochondrial energy metabolism were evaluated in BEAS-2B cells or BALB-c mouse lung tissue.
Results: Radon exposure induced epithelial-mesenchymal transition (EMT)-like transformation in BEAS-2B cells, as indicated by increased cell proliferation and migration. Additional mitochondrial alterations, including decreased ATP content, increased ROS levels, mtDNA copy numbers, cell apoptosis, and G2/M cell cycle arrest were observed. Radon exposure caused an energy generation shift from aerobic respiration to glycolysis as reflected by increased expression of TIGAR and p53R2 proteins and decreased expression of SCO2 protein in BEAS-2B cells, and increased expression of p53, SCO2 and TIGAR proteins in mouse lung tissue, respectively. The effects of p53 deficiency on the prevention of mitochondrial dysfunction suggested a protective role of p53 in radon-induced malignant-like features in BEAS-2B cells.
Conclusions: Repeated radon exposure induced EMT-like transformation in BEAS-2B cells via disruption of mitochondrial function. Activation of p53 and p53-responsive signaling pathways in BEAS-2B cells and BALB-c mice may confer a protective mechanism for radon-induced lung injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734629 | PMC |
http://dx.doi.org/10.1093/toxres/tfad106 | DOI Listing |
Radiat Environ Biophys
December 2024
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON, K1A 1C1, Canada.
The Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM) have been developed to manage radiation doses received in workplaces involving NORM, such as mineral extraction and processing, oil and gas production, metal recycling or water treatment facilities. This management strategy works well for most naturally occurring radioactive materials in workplaces, with the exception of radon. Radon is a naturally occurring radioactive gas generated by the decay of uranium-bearing minerals in rocks and soils.
View Article and Find Full Text PDFBiomarkers
January 2025
Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
Background: Radon, a radioactive gas, is a significant risk factor for lung cancer, especially in non-smokers. This study examines the expression of exosomal microRNAs (miRNAs) as potential biomarkers for radon-induced effects.
Methods: A total of 109 participants from high- and low-radon areas in Kazakhstan were included.
Proc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.
Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.
Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.
Cancers (Basel)
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Aomori, Japan.
Indoor radon is a significant risk factor for the development of LC. This study aimed to identify potential biomarkers for LC risk in high background radiation areas using a metabolomics approach (UHPLC-HRMS). Based on the indoor radon activity concentration measurements in the Kong Khaek subdistrict, serum samples were collected from 45 nonsmoker or former smoker participants, comprising 15 LC patients and 30 matched healthy controls (low- and high-radon groups, respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!