This study aimed to evaluate umami taste in Hanwoo with different feed by chemical analysis, sensory evaluation and an electronic tongue system. Hanwoo cattle were divided into three groups: control group (fed only total mixed ration [TMR]), T1 (fed soybean meal + TMR), and T2 (fed soybean meal + corn-dried distiller's grain with solubles [Corn DDGS] + TMR). The three most abundant fatty acids (C18:1n-9, C16:0, and C18:0) in the T1, T2, and control groups accounted for 83.63%, 86.07%, and 85.52% of the total fatty acid content, respectively. Umami taste-related glutamic acid levels were significantly high in T1 (109.89 mg/kg), followed by T2 (66.66 mg/kg) and control (47.27 mg/kg). Fatty acid levels showed a high correlation with umami taste. The results of this study showed that the amino acid and fatty acid levels had been affected by feed types and soybean- or Corn DDGS-based feed potentially enhanced Hanwoo's umami flavor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740071 | PMC |
http://dx.doi.org/10.1016/j.fochx.2023.100889 | DOI Listing |
Curr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.
A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:
Cyclization enhances various properties of peptides and has been widely used in life sciences, but it has not been explored in taste peptides. Our study found that cyclization of the N/C termini of the peptides (head-to-tail) via amide bond is a potentially effective modification strategy for umami peptides to improve their properties. This is the first report on umami cyclic peptides.
View Article and Find Full Text PDFTo prepare dual-functional seasoning ingredients with a salty-umami taste, five proteases were applied to hydrolyze proteins, preparing enzymatic hydrolysates. Their taste compounds along with the salty-umami taste, were investigated. The results revealed that enzymatic hydrolysis facilitated the release of taste compounds from .
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States.
Through a quantitative analysis of saltiness perception, favorable enzymatic hydrolysis parameters were confirmed for the preparation of saltiness-enhancing peptide mixtures from . The enzymatic hydrolysate was fractionated into four fractions (F1-F4) by gel chromatography, with F3 exhibiting the strongest saltiness-enhancing effect (22% increase). LC-MS/MS analysis of F3 identified 36 peptides, and their secondary structures and interactions with the TMC4 receptor were examined through circular dichroism spectroscopy and molecular docking.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!