A novel four component modified Biginelli reaction for the synthesis of C-2 functionalized dihydropyrimidines has been established. The approach uses assembly of less explored acetyl acetone with aromatic aldehyde, thiourea, and dimethyl sulphate to construct a novel 5-acetyl 2-methylthio dihydropyrimidine system, which works as an efficient well-designed intermediate for generating C-2 modified Biginelli libraries with nitrogen nucleophiles. Phenyl hydrazine, semicarbazide, and aryl semicarbazides are successfully used as N-nucleophiles to generate C-2 functionalized dihydropyrimidine derivatives, which fulfil the demands of active pharmacophore. Time economy, step economy, and a single pot reaction with moderate to excellent yield are the major advantages of this novel method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734754 | PMC |
http://dx.doi.org/10.3906/kim-2105-59 | DOI Listing |
Macromol Rapid Commun
November 2024
School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science.
View Article and Find Full Text PDFRSC Adv
July 2024
Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran +98-741-222-3048 +98-741-222-3048.
Due to their biocompatibility, facile recoverability, mechanical and thermal stability, high surface area, and active catalytic sites, magnetic nanocomposites, containing natural polymers and magnetic nanoparticles, have been used to produce supports for catalysts or biocatalysts. Pectin, an important polycarbohydrate, has abundant functional groups with excellent ability to coat the surface of the nanoparticles to fabricate composite and hybrid materials. A novel bimetallic cobalt(ii) and copper(ii)-based metal-organic framework (Co/Cu-MOF) immobilized pectin-modified FeO magnetic nanocomposite was designed and fabricated.
View Article and Find Full Text PDFRSC Adv
January 2024
Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamilnadu India
Clay and modified clay-based catalysts are widely used in organic transformation. Owing to the interlayer ions and good ion exchange capacity of clay, replacement with another ion and incorporation of different nanomaterials can be done. Due to these significant properties of clay, it can be utilized in the synthesis of various organic compounds.
View Article and Find Full Text PDFRSC Adv
August 2022
Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284.
In this study, new l-asparagine grafted on 3-aminopropyl-modified FeO@SiO core-shell magnetic nanoparticles using the EDTA linker (FeO@SiO-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The FeO@SiO-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1)-one derivatives under solvent-free conditions. It was proved that FeO@SiO-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components.
View Article and Find Full Text PDFTurk J Chem
September 2021
Department of Pharmaceutical Chemistry, S.M.B.T. College of Pharmacy, Dist-Nashik, India.
A novel four component modified Biginelli reaction for the synthesis of C-2 functionalized dihydropyrimidines has been established. The approach uses assembly of less explored acetyl acetone with aromatic aldehyde, thiourea, and dimethyl sulphate to construct a novel 5-acetyl 2-methylthio dihydropyrimidine system, which works as an efficient well-designed intermediate for generating C-2 modified Biginelli libraries with nitrogen nucleophiles. Phenyl hydrazine, semicarbazide, and aryl semicarbazides are successfully used as N-nucleophiles to generate C-2 functionalized dihydropyrimidine derivatives, which fulfil the demands of active pharmacophore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!