Silver Nanoparticles for Enhancing the Efficiency of Micropropagation of Banana ( L.).

Trop Life Sci Res

Department of Biological Sciences, The University of Jordan, Queen Rania St, Amman, Jordan.

Published: June 2023

Silver nanoparticles (AgNPs) have numerous applications in plant biotechnology. The unique biological activities of AgNPs in reducing microbial contamination and promoting plant growth have encouraged their use in the development of novel culture systems for the cultivation of several plant species. In this study, the influence of (80 nm-100 nm) AgNPs on the micropropagation of banana was examined by incorporating AgNPs into shoot multiplication and rooting media at concentrations of 3 mg/L-15 mg/L. Biometric parameters for shoot multiplication (number of shoots/explant, shoot length and leaf surface area) and root development (number of roots/explant and root length) were analysed. In addition, shoot chlorophyll content, proline content and the possible impact of lipid peroxidation on membrane stability of plantlets were estimated. The results showed that all concentrations of AgNPs stimulated shoot growth and enhanced root development. The highest response was observed in media supplemented with 12 mg/L AgNPs. This optimal level of AgNPs caused a threefold increase in shoot growth parameter and a similar increase in root numbers/shoot and root length. Treatment with AgNPs at 12 mg/L also increased chlorophyll and proline content of shoots by 25% and 120% over control, respectively. Although the application of AgNPs increased the level of lipid peroxidation in shoots, it however, had a limited influence on membrane stability index. These results suggested that the administration of AgNPs to culture media can be effectively utilised for the enhancement of banana micropropagation with minimal toxic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735259PMC
http://dx.doi.org/10.21315/tlsr2023.34.2.8DOI Listing

Publication Analysis

Top Keywords

agnps
10
silver nanoparticles
8
micropropagation banana
8
shoot multiplication
8
root development
8
root length
8
proline content
8
lipid peroxidation
8
membrane stability
8
shoot growth
8

Similar Publications

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

Electrospun Chitosan/Polylactic Acid Nanofibers with Silver Nanoparticles: Structure, Antibacterial, and Cytotoxic Properties.

ACS Appl Bio Mater

January 2025

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!