In this work, microcrystalline cellulose (MCC) was isolated from jute sticks and sodium carboxymethyl cellulose (Na-CMC) was synthesized from the isolated MCC. Na-CMC is an anionic derivative of microcrystalline cellulose. The microcrystalline cellulose-based hydrogel (MCCH) and Na-CMC-based hydrogel (Na-CMCH) were prepared by using epichlorohydrin (ECH) as a crosslinker by a chemical crosslinking method. The isolated MCC, synthesized Na-CMC, and corresponding hydrogels were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) for functional groups, crystallinity, surface morphology, and composite elemental composition, respectively. Pseudo-first-order, pseudo-second-order, and Elovich models were used to investigate the adsorption kinetics. The pseudo-second-order one is favorable for both hydrogels. Freundlich, Langmuir, and Temkin adsorption isotherm models were investigated. MCCH follows the Freundlich model ( = 0.9967), and Na-CMCH follows the Langmuir isotherm model ( = 0.9974). The methylene blue (MB) dye adsorption capacities of ionic (Na-CMCH) and nonionic (MCCH) hydrogels in different contact times (up to 600 min), initial concentrations (10-50 ppm), and temperatures (298-318 K) were investigated and compared. The maximum adsorption capacity of MCCH and Na-CMCH was 23.73 and 196.46 mg/g, respectively, and the removal efficiency of MB was determined to be 26.93% for MCCH and 58.73% for Na-CMCH. The Na-CMCH efficiently removed the MB from aqueous solutions as well as spiked industrial wastewater. The Na-CMCH also remarkably efficiently reduced priority metal ions from an industrial effluent. An effort has been made to utilize inexpensive, readily available, and environmentally friendly waste materials (jute sticks) to synthesize valuable adsorbent materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733992 | PMC |
http://dx.doi.org/10.1021/acsomega.3c06349 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China. Electronic address:
Int J Biol Macromol
December 2024
Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.
View Article and Find Full Text PDFGels
December 2024
"Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania.
This paper provides a solid foundation for understanding the synthesis, properties, and applications of cellulose-based gels. It effectively showcases the potential of these gels in diverse applications, particularly in biomedicine, and highlights key synthesis methods and properties. However, to push the field forward, future research should address the gaps in understanding the environmental impact, mechanical stability, and scalability of cellulose-based gels, while also considering how to overcome barriers to their industrial use.
View Article and Find Full Text PDFGels
November 2024
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China; School of Health and Hygiene, Guangzhou Huaxia Vocational College, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!