Six novel cyclodextrin (CD)-based metal-organic frameworks (MOFs) were synthesized using distinct crystallization methodologies. A modified vapor diffusion method is introduced for the first time, termed fast crystallization, which enables the rapid solid-state formation of MOF compounds. This innovative method yielded four of the newly synthesized MOFs. The crystal structures of five obtained frameworks were structurally characterized through single-crystal X-ray diffraction, while one, compound (γ-CD-K-5), was additionally characterized as a bulk powder. Structural analysis revealed that two of the newly obtained MOFs, namely, compound (α-CD-K-2) and compound (α-CD-Rb-3), exhibited isostructural characteristics, forming a three-dimensional (3D) framework. Compound (α-CD-K-1) shared the same space group as EVEGET (α-CD-K) and displayed the same framework type. Furthermore, the crystal packing of compound (β-CD-K-4) closely resembled that of compound and EVEGET, with the only distinction lying in the type of CD employed. Notably, compound (γ-CD-K-6) incorporated an iodine ion with an occupancy of 0.2. To discern the intermolecular interactions within the obtained MOFs, the Hirshfeld surface was calculated using Crystal Explorer software.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733991PMC
http://dx.doi.org/10.1021/acsomega.3c07429DOI Listing

Publication Analysis

Top Keywords

crystal structures
8
compound
7
never-ending story
4
story cyclodextrin-based
4
cyclodextrin-based metal-organic
4
metal-organic framework
4
crystal
4
framework crystal
4
structures crystallization
4
crystallization methods
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!