The design or investigation of fluorescence probes continues to receive attention with respect to the diverse applications of spectrofluorometry. Depending on the highly sensitive character, fluorescence spectroscopy-based methodologies have been widely used in recent years in different sciences, including analytical, environmental, and medicinal chemistry areas. In our previous works, we have shown the iron (III) selective on-off sensor properties of benzo[c]chromen-6-one derivatives. In this study, we have extrapolated this research to 4-substituted analogues and investigated both fluorescent and metal interaction properties. Following the synthesis and structure identification studies, (±)-7,8,9,10-tetrahydro-3-hydroxy-4-(1-hydroxyethyl)benzo[c]chromen-6-one was found as a fluorescent molecule displaying fluorescence enhancement in the presence of metals. This feature has been found quite different in comparison to the previous urolithins investigated. This finding suggested the substituent dependent effects and variations on the fluorescent properties of benzo[c]chromen-6-one system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734759PMC
http://dx.doi.org/10.3906/kim-2106-6DOI Listing

Publication Analysis

Top Keywords

investigation fluorescence
8
metal interaction
8
interaction properties
8
properties benzo[c]chromen-6-one
8
fluorescence metal
4
properties
4
properties racemic
4
racemic 78910-tetrahydro-3-hydroxy-4-1-hydroxyethylbenzo[c]chromen-6-one
4
78910-tetrahydro-3-hydroxy-4-1-hydroxyethylbenzo[c]chromen-6-one design
4
design investigation
4

Similar Publications

Proteins and polyphenols exhibit distinct biological activities and functional properties. A comprehensive investigation into the formation mechanisms, structures, and functional properties of protein-polyphenol complexes will deepen our understanding of their interactions and establish a theoretical foundation and technical support for development of novel functional foods and pharmaceutical products. The almond protein-phloretin (AP-PHL) covalent complex was synthesized through the covalent binding of hydroxyl radicals to phloretin (PHL), utilizing almond protein (AP) as the raw material.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Fluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutaamate release activity at presynaptic boutons in cultured rat hippocampal neurons.

View Article and Find Full Text PDF

Diverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!