Metal-organic frameworks (MOFs) and their derivatives have been extensively employed in Oxygen Evolution Reaction (OER) catalysts due to their significantly larger specific surface areas, distinct metal centers, and well-organized porous structures. However, the microporous structure of MOFs and their derivatives presents mass transfer resistance, limiting their further development. Drawing inspiration from hierarchical structures allowing for the transport and exchange of substances in the biological world, we designed and fabricated biomimetic layered porous structures within ZIF-67 and its derivatives. Based on this, we achieved a three-dimensional ordered layered porous nitrogen-doped carbon-coated magnetic cobalt catalyst (3DOLP Co@NDC) with a biomimetic pore structure. It is found that the 3DOLP Co@NDC (352 mV @10 mA cm) was better than Co@NDC (391 mV @10 mA cm). The introduction of a three-dimensional ordered layered porous structure is conducive to increasing the specific surface area of the material, increasing the electrochemical active area, and improving the catalytic performance of the material. The introduction of a three-dimensional ordered layered porous structure would help to build a bionic grade pore structure. The existence of biomimetic grade pore structure can effectively reduce the mass transfer resistance, improve the material exchange efficiency, and accelerate the reaction kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300946 | DOI Listing |
Small Methods
January 2025
The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China.
Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:
It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.
View Article and Find Full Text PDFNano Lett
January 2025
Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium.
Porous nanomaterials find wide-ranging applications in modern medicine, optoelectronics, and catalysis, playing a key role in today's effort to build an electrified, sustainable future. Accurate in situ quantification of their structural and surface properties is required to model their performance and improve their design. In this article, we demonstrate how to assess the porosity, surface area and utilization of a model nanoporous soft-landed copper oxide catalyst layer/carbon interface, which is otherwise difficult to resolve using physisorption or capacitance-based methods.
View Article and Find Full Text PDFThe development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Central South University, chemistry, CHINA.
The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!