Nanocomplexes film composed of gallic acid loaded ovalbumin/chitosan nanoparticles and pectin with excellent antibacterial activity: Preparation, characterization and application in coating preservation of salmon fillets.

Int J Biol Macromol

Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Published: February 2024

Active packaging has been recognized as an effective approach to extend the shelf life of food, but the rapid release of active substances limits the preservation effect. In this study, gallic acid (GA)-loaded ovalbumin (OVA)/chitosan (CS) nanoparticles with slow-release properties were prepared and embedded into the pectin matrix to refine the rapid release of GA in the pectin and elongate the shelf life of salmon fillets. Our results showed that GA could be released continuously from the OVA/CS nanoparticles. The pectin film incorporated with GA-loaded OVA/CS nanoparticles exhibited good light barrier and mechanical properties. The opacity value of the film reached 1.65 ± 0.06 UA/mm, and the tensile strength and elongation at break were 15.97 ± 1.55 MPa and 7.29 ± 0.42 %, respectively. In addition, the pectin film combined with GA-loaded OVA/CS nanoparticles showed improved antibacterial activity against two common biogenic amine-producing bacteria (Morganella morganii and Escherichia coli). Moreover, the nanocomposite film delayed salmon fillets' biogenic amine generation, and the shelf life was extended by 3 days compared with the control group. These promising properties supported using the GA-loaded OVA/CS nanoparticle-pectin films as preservation materials for fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128934DOI Listing

Publication Analysis

Top Keywords

shelf life
12
ova/cs nanoparticles
12
ga-loaded ova/cs
12
gallic acid
8
nanoparticles pectin
8
antibacterial activity
8
salmon fillets
8
rapid release
8
pectin film
8
nanoparticles
5

Similar Publications

A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation.

Int J Biol Macromol

January 2025

Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:

Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.

View Article and Find Full Text PDF

Durian (Durio zibethinus Murr.) is a seasonal fruit with a short harvesting period, requiring postharvest processing such as cutting, peeling, freeze-drying, cooking, and frying to enhance its shelf life and nutritional quality. In this study, fresh Monthong durian (MTD), MTD Sticks, MTD Cake, and MTD Chips were analyzed for polyphenols, phenolic acids, tannins, flavonoids and thermal stability.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Deciphering antioxidant interactions via data mining and RDKit.

Sci Rep

January 2025

Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.

Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.

View Article and Find Full Text PDF

Sucrose laurate, a commonly used emulsifier, was investigated to explore its preservative effect combined with nisin using Bacillus subtilis as indicator. The results suggested that sucrose laurate and nisin exhibited synergistic antibacterial effect with the fractional inhibitory concentration index of 0.5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!