Dual lignin-derived polymeric system for peptone removal from simulated wastewater.

Environ Pollut

Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada. Electronic address:

Published: February 2024

The long-term existence of peptone can breed a large number of bacteria and cause the eutrophication of municipal wastewater. Thus, removing peptone in the wastewater is a major challenge facing the current industry. This study used cationic and anionic lignin polymers, i.e., kraft lignin-[2-(methacryloyloxy)ethyl] trimethylammonium methyl sulfate (cationic lignin polymer, CLP) and kraft lignin-acrylic acid (anionic lignin polymer, ALP), as flocculants to eliminate peptone from model wastewater in the single and dual component systems. The affinity of peptone for ALP or CLP was assessed by quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, contact angle, and vertical scan analyzer. Results illustrated that the adsorption effect of CLP for peptone was significantly superior to that of ALP owing to the stronger vital interaction between cationic polymer and peptone molecules. Based on destabilization and sedimentation analyses, introducing CLP triggered the preliminary flocculation of peptone via bridging action, as indicated by a considerable increment in the destabilization index (from 1.1 to 10.6). Moreover, peptone adsorbed more on the CLP coated surface than on the ALP coated one (14.8 vs 5.4 mg/m), while ALP facilitated its further adsorption in the dual polymer system. This is because CLP adsorbed a part of peptone molecules on its surface. Then, ALP entrapped the unattached peptone onto the CLP coated surface through electrostatic interaction. Compared with the single polymer system, mixing ALP and CLP subsequently into the peptone solution in the dual system generated larger size aggregates (mean diameter of 6.1 μm) and made the system destabilization (Turbiscan stability index up to 58.1), thereby yielding more flocculation and sedimentation. Finally, peptone was removed successfully from simulated wastewater with a turbidity removal efficiency of 92.5%. These findings confirmed that the dual-component system containing two lignin-derived polymers with opposite charges could be viable for treating peptone wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123142DOI Listing

Publication Analysis

Top Keywords

peptone
14
simulated wastewater
8
peptone wastewater
8
anionic lignin
8
lignin polymer
8
clp
8
alp clp
8
peptone molecules
8
clp coated
8
coated surface
8

Similar Publications

Lyophyllum decastes is a type of edible and medicinal mushroom with high nutritional value. However, it can be infected by fungi during the fruiting process, which impairs the development of the industry. In this study, one pathogenic fungus was isolated from the diseased fruiting bodies of L.

View Article and Find Full Text PDF

Bioaugmented slurry technology is a sustainable remediation technology for PAHs-contaminated soil. However, the lack of experimental data on the remediation of complex, actual contaminated soils has hindered the practical application of this technology. This study explored the bioaugmented degradation of PAHs using actual soil slurry with and without the addition of microbial agents in the microscopic world.

View Article and Find Full Text PDF

Ecuadorian Cacao Mucilage as a Novel Culture Medium Ingredient: Unveiling Its Potential for Microbial Growth and Biotechnological Applications.

Foods

January 2025

Grupo de Investigación en Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador.

Cacao mucilage is typically disposed of during processing, yet its abundant content of organic compounds, polysaccharides, and nutrients renders it valuable for various applications. This scientific study investigates the suitability of cacao mucilage as an alternative culture medium for , , and , aiming to provide a viable alternative to traditional media. Through a mixed-design approach, the powdered mucilage, peptone, and yeast extract ingredients were optimized using the recovery rates of each micro-organism as the response variable.

View Article and Find Full Text PDF

Screening of Lactic Acid Bacteria Isolated from Fermented Cowpea and Optimization of Biomass Production Conditions.

Foods

January 2025

State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang 330047, China.

Considering the four characteristics of strains, including acid production, acid tolerance, salt tolerance, and nitrite degradation rate, NCU006063 was selected as the fermentation agent, and the medium composition of NCU006063 was optimized using Plackett-Burman and central composite rotational design. Three of the seven factors studied in the Plackett-Burman design significantly affected the viable counts. A central composite rotational design was used to optimize the significant factors and generate response surface plots.

View Article and Find Full Text PDF

Growth Propagation of Liquid Spawn on Non-Woven Hemp Mats to Inform Digital Biofabrication of Mycelium-Based Composites.

Biomimetics (Basel)

January 2025

Research Group Architectural Engineering, Department of Architecture, KU Leuven, 3001 Leuven, Belgium.

Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!