Despite remarkable progresses in quantitative phase imaging (QPI) microscopes, their wide acceptance is limited due to the lack of specificity compared with the well-established fluorescence microscopy. In fact, the absence of fluorescent tag prevents to identify subcellular structures in single cells, making challenging the interpretation of label-free 2D and 3D phase-contrast data. Great effort has been made by many groups worldwide to address and overcome such limitation. Different computational methods have been proposed and many more are currently under investigation to achieve label-free microscopic imaging at single-cell level to recognize and quantify different subcellular compartments. This route promises to bridge the gap between QPI and FM for real-world applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2023.103054DOI Listing

Publication Analysis

Top Keywords

quantitative phase
8
fluorescence advances
4
advances computational
4
computational label-free
4
label-free full
4
full specificity
4
specificity quantitative
4
phase microscopy
4
microscopy despite
4
despite remarkable
4

Similar Publications

Nasal spray treatments that inhibit the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) entry into nose and nasopharynx at early stages can be an appropriate approach to stop or delay the progression of the disease. We performed a prospective, randomized, double-blind, placebo-controlled, parallel-group, multicentric, phase II clinical trial comparing the rate of hospitalization due to COVID-19 infection between azelastine 0.1% nasal spray and placebo nasal spray treatment groups.

View Article and Find Full Text PDF

Microwave phase detectors (MPDs) are key components of instantaneous frequency measurement (IFM) receivers and phase interferometer direction finding (PIF-DF) receivers. In conventional analyses, there is seldom a major quantitative discussion of MPD characterization when multiple signals arrive at the same time, which is often the case in complex and noisy electromagnetic environments. We have reanalyzed the characteristics of MPDs with respect to filter effects acting on more than two RF signals and differential amplifiers, which are not considered in conventional analyses.

View Article and Find Full Text PDF

: Despite the known impact of propofol and remifentanil on hemodynamics and patient outcomes, there is a lack of comprehensive quantitative analysis, particularly in surgical settings, considering the influence of noxious stimuli. The aim of this study was to develop a quantitative semi-mechanistic population model that characterized the time course changes in mean arterial pressure (MAP) and heart rate (HR) due to the effects of propofol, remifentanil, and different types of noxious stimulation related to the clinical routine. : Data from a prospective study were used; the study analyzed the effects of propofol and remifentanil general anesthesia on female patients in physical status of I-II according to the American Society of Anesthesiologists (ASA I-II) undergoing gynecology surgery.

View Article and Find Full Text PDF

This study aimed to develop a quantitative analytical method for the simultaneous determination of cannabidiol (CBD) and melatonin (MT) in mouse plasma using the protein precipitation method coupled with LC-MS/MS. Additionally, this study sought to investigate the impact of CBD on the pharmacokinetics of MT in mice using this method. Mouse plasma samples were precipitated with acetonitrile and analyzed using a Kromasil 100-5-C8 (2.

View Article and Find Full Text PDF

Cuatrec. and (Kunth) Cass.: Chemical and Enantioselective Analyses of Two Unprecedented Essential Oils from Ecuador.

Plants (Basel)

December 2024

Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador.

This study presents the first chemical and enantioselective analyses of essential oils (EOs) derived from the leaves of two endemic species, Cuatrec. and (Kunth) Cass., from Loja, Ecuador.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!