A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The impact of olive mill wastewater on soil properties, nutrient and heavy metal availability - A study case from Syrian vertisols. | LitMetric

The impact of olive mill wastewater on soil properties, nutrient and heavy metal availability - A study case from Syrian vertisols.

J Environ Manage

Department of Plant Biology and Soil Science, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Agroecology and Food Institute (IAA), University of Vigo - Campus Auga, 32004, Ourense, Spain. Electronic address:

Published: February 2024

Olive oil mill wastewater (OMW) is an environmental concern in olive oil producers' regions due to its use in agricultural soils as an organic amendment. However, OMW can also be used as organic fertilizer due to their high organic matter and nutrient levels, but its use, when it occurs without environmental management, can cause serious environmental implications for soils and waters. This work evaluated the impact of different OMW levels on a set of physicochemical parameters from an agricultural vertisol where wheat grew (Triticum aestivum L var. Douma 1). A set of physicochemical parameters were conducted before adding different levels of OMW (0, 5, 10 and 15 L m) at two soil depths (0-30 and 30-60 cm) and for the two growing seasons to determine: i) the effect of OMW treatments on the studied physicochemical soil properties (bulk density, soil porosity, soil pH, electrical conductivity and organic matter), ii) available primary (N, P, K) and secondary macronutrients (Ca, Mg and Na), ii) micronutrients (Cu Fe, Mn and Zn), and iv) available heavy metals (Cd and Pb). The results indicated that soil physicochemical parameters were slightly improved, mainly due to improvement in organic matter, macro- and micronutrients, usually proportionally to the olive mill wastewater dose. Cadmium and Pb were within the permissible limits. The increased OMW had different behaviour on the soil nutritional balances of different elements, leading to nutrient imbalances, although in some cases, they were improved. However, the plant growth was not affected, and it was improved under 10 L m and 15 L m doses. The results offer valuable data about the use of OMW as organic fertilizer for crops and their potential impact on soil properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119861DOI Listing

Publication Analysis

Top Keywords

mill wastewater
12
soil properties
12
organic matter
12
physicochemical parameters
12
olive mill
8
soil
8
olive oil
8
omw organic
8
organic fertilizer
8
set physicochemical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!