Sodium carboxymethylcellulose/MXene/zeolite imidazolium framework-67-derived 3D porous carbon aerogel for high-performance asymmetric supercapacitors.

Carbohydr Polym

Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China. Electronic address:

Published: February 2024

Herein, we propose a carbon/TiO/CoO (CTC) composite carbon aerogel with a 3D porous conductive network structure derived from sodium carboxymethylcellulose (CMC)/Mxene (TiCT)/zeolite imidazolium framework-67 (ZIF-67). Among them, CMC is used as the carbon skeleton, which can reduce the powdering caused by volume change and improve the cycle stability. TiCT acts as the conductive agent and dispersant for ZIF-67, exposing more reactive sites while constructing fast conductive channels to enhance electrochemical performance. The microstructure of the CTC carbon aerogel is modulated by controlling the mass ratio of TiCT to ZIF-67, and the carbon aerogel with a mass ratio of 2:3 (CTC-2:3) is experimentally demonstrated to have the best electrochemical performance. The CTC-2:3 electrode exhibits a high specific capacitance of 481.7 F g at 1 A g and possesses a rate performance of 78.9 % at 10 A g. The assembled asymmetric supercapacitor (ASC, CTC-2:3//TiCT) delivers an energy density of 48.4 Wh kg at a power density of 699.8 W kg. Moreover, the ASC device maintains 85.3 % initial capacitance and 99.1 % coulombic efficiency after 10,000 GCD cycles, indicating good cycling stability. This facile design pathway provides a new insight for the development of high-performance electrode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121641DOI Listing

Publication Analysis

Top Keywords

carbon aerogel
16
electrochemical performance
8
mass ratio
8
carbon
5
sodium carboxymethylcellulose/mxene/zeolite
4
carboxymethylcellulose/mxene/zeolite imidazolium
4
imidazolium framework-67-derived
4
framework-67-derived porous
4
porous carbon
4
aerogel
4

Similar Publications

Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur.

View Article and Find Full Text PDF

The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.

View Article and Find Full Text PDF

The demand for sustainable packaging materials is rapidly increasing due to growing environmental concerns over the impact of plastic waste. In this study, biodegradable, porous, lightweight, and high-surface-area microcrystalline cellulose-starch (MCC-S) hybrid aerogels were synthesized via supercritical carbon dioxide (SC-CO) drying. The samples were generated using five different MCC-S weight ratios and characterized for their morphology, crystallinity, and structural and thermal properties.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy metal wastewater is highly toxic even at low levels, posing risks to the environment and human health, necessitating the development of effective treatment methods.
  • MnFeO-loaded bamboo pulp carbon-based aerogel (MCA) is created through freeze-drying and carbonization, and its properties are analyzed using various scientific techniques.
  • MCA shows strong adsorption capabilities for heavy metals Pb, Cu, and Cd, with maximum capacities of 74.38, 84.21, and 73.63 mg/g, indicating its potential for use in wastewater purification.
View Article and Find Full Text PDF

Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.

J Colloid Interface Sci

December 2024

Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:

Article Synopsis
  • The research addresses the low mechanical properties of biomass-based carbon aerogels, which limit their use in pressure sensing and energy storage for wearable tech and electronic skin.* -
  • A new supramolecular assembly structure inspired by natural wood was developed, utilizing bacterial cellulose and lignin, enhanced with graphene oxide for better performance.* -
  • The resulting carbon aerogels show remarkable features such as supercompressibility, high elasticity, stable sensor response, and impressive energy storage capabilities, making them ideal for wearable applications, even in extreme conditions.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!