A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Solar-assisted oxidation of organochlorine pesticides in groundwater using persulfate and ferrioxalate. | LitMetric

Solar-assisted oxidation of organochlorine pesticides in groundwater using persulfate and ferrioxalate.

Environ Pollut

Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain. Electronic address:

Published: February 2024

The oxidation of hexachlorocyclohexane isomers in the aqueous phase (Milli-Q and groundwater) was studied using persulfate activated by ferrioxalate and solar light at circumneutral pH. The experiments were conducted in a solar simulator reactor with local radiation fluxes q= 1.12·10 E cms and in compound parabolic collectors with solar light (q≈10 E cms) for 390 min. The effect of activator dosage (18-125 μM ferrioxalate) and persulfate concentration (520-2600 μM) on hexachlorocyclohexane conversion and oxalate and oxidant consumption was analyzed. Conversion of about 95% of β isomer was achieved at 390 min using 1300 μM of initial persulfate and 63 μM of Fe concentration despite this β isomer being the most recalcitrant to oxidation (X=0.98). Dechlorination above 80% was achieved under these conditions, analyzing the chlorides released into the water. The influence of chloride and bicarbonate on hexachlorocyclohexanes degradation was analyzed in milli-Q water and in groundwater. Hexachlorocyclohexane conversion at 390 min decreases from 98% to 83, 75 and 65% in the presence of chloride, bicarbonate or groundwater, respectively. Results obtained with compound parabolic collectors and solar light using 2600 μM NaSO and 63 μM Fe for removing hexachlorocyclohexanes agreed with those from the solar simulator reactor, supporting using solar light to activate persulfate for sustainable abatement of persistent organic pollutants in aqueous matrixes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123205DOI Listing

Publication Analysis

Top Keywords

solar light
16
solar simulator
8
simulator reactor
8
compound parabolic
8
parabolic collectors
8
collectors solar
8
hexachlorocyclohexane conversion
8
chloride bicarbonate
8
solar
6
persulfate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!