Comparing the removal efficiency of diisobutyl phthalate by Bacillariophyta, Cyanophyta and Chlorophyta.

Sci Total Environ

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China. Electronic address:

Published: February 2024

The utilization of microalgae for both removing phthalate esters (PAEs) from wastewater and producing bioenergy has become a popular research topic. However, there is a lack of studies comparing the effectiveness of different types of microalgae in removing these harmful compounds. Therefore, the present study aimed to evaluate and compare the efficiency of various processes, such as hydrolysis, photolysis, adsorption, and biodegradation, in removing diisobutyl phthalate (DiBP) using six different species of microalgae. The study indicated that the average removal efficiency of DiBP (initial concentrations of 5, 0.5, and 0.05 mg L) by all six microalgae (initial cell density of 1 × 10 cells mL) was in the order of Scenedesmus obliquus (95.39 %) > Chlorella vulgaris (94.78 %) > Chroococcus sp. (91.16 %) > Cyclotella sp. (89.32 %) > Nitzschia sp. (88.38 %) > Nostoc sp. (84.33 %). The results of both hydrolysis and photolysis experiments revealed that the removal of DiBP had minimal impact, with respective removal efficiencies of only 0.89 % and 1.82 %. The adsorption efficiency of all six microalgae decreased significantly with increasing initial DiBP concentrations, while the biodegradation efficiency was elevated. Chlorella vulgaris and Chroococcus sp. demonstrated the highest adsorption and biodegradation efficiencies among the microalgae tested. Scenedesmus obliquus was chosen for the analysis of the degradation products of DiBP due to its exceptional ability to remove DiBP. The analysis yielded valuable results, identifying monoisobutyl phthalate (MiBP), phthalic acid (PA), and salicylic acid (SA) as the possible degradation products of DiBP. The possible degradation pathways mainly included dealkylation, the addition of hydroxyl groups, and decarboxylation. This study lays a theoretical foundation for the elimination of PAEs in the aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169507DOI Listing

Publication Analysis

Top Keywords

removal efficiency
8
diisobutyl phthalate
8
microalgae removing
8
hydrolysis photolysis
8
adsorption biodegradation
8
scenedesmus obliquus
8
degradation products
8
products dibp
8
dibp
7
microalgae
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!