Effect of electron acceptors on product selectivity and carbon flux in carbon chain elongation with Megasphaera hexanoica.

Sci Total Environ

Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain. Electronic address:

Published: February 2024

AI Article Synopsis

  • Megasphaera hexanoica utilizes lactate with different electron acceptors, acetate and butyrate, to produce caproate, with variations in these acceptors affecting carbon flux and CA yield.
  • Maximum caproate production was achieved at specific ratios of lactate to acetate (10:1) and lactate to butyrate (3:1), with a peak of 39.45 mM when both acceptors were used together.
  • In larger-scale experiments, a bioreactor showed high biomass yield but a slight drop in caproate production, indicating the bacterial strain's adaptability to changing conditions.

Article Abstract

Megasphaera hexanoica is a bacterial strain following the reverse β-oxidation pathway to synthesize caproate (CA) using lactate (LA) as an electron donor (ED) and acetate (AA) or butyrate (BA) as electron acceptors (EA). Differences in the type and concentration of EA lead to distinctions in product distribution and energy bifurcation of carbon fluxes in ED pathways, thereby affecting CA production. In this study, the effect of various ratios of AA, BA, and AA+BA as EA on carbon flux and CA specific titer during the carbon chain elongation in M. hexanoica was explored. The results indicated that the maximum levels of CA were 18.81 mM and 31.48 mM when the molar ratios of LA/AA and LA/BA were 10:1 and 3:1, respectively. Meanwhile, when AA and BA were used as combined EA (LA, AA, and BA molar amounts of 100, 23, and 77 mM), a maximum CA production of 39.45 mM was obtained. Further analysis revealed that the combined EA exhibited a CA production carbon flux of 49 % (4.3 % and 19.5 % higher compared to AA or BA, respectively) and a CA production specific titer of 45.24 mol (80.89 % and 58.51 % higher compared to AA or BA, respectively), indicating that the effective carbon utilization rate and CA production efficiency were greatly improved. Finally, a scaled-up experiment was conducted in a 1.2 L (working volume) automated bioreactor, implying high biomass (optical density at 600 nm or OD = 1.809) and a slight decrease in CA production (28.45 mM). A decrease in H production (4.11 g/m) and an increase in CO production (0.632 g/m) demonstrated the appropriate metabolic adaptation of M. hexanoica to environmental changes such as stirring shear.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169509DOI Listing

Publication Analysis

Top Keywords

carbon flux
12
electron acceptors
8
carbon chain
8
chain elongation
8
megasphaera hexanoica
8
production
8
specific titer
8
higher compared
8
decrease production
8
carbon
7

Similar Publications

The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

The abiologically and biologically driving effects on organic matter in marginal seas revealed by deep learning-assisted model analysis.

Sci Total Environ

January 2025

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).

View Article and Find Full Text PDF

The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon.

Sci Total Environ

January 2025

College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:

Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).

View Article and Find Full Text PDF

Microplastics induce human kidney development retardation through ATP-mediated glucose metabolism rewiring.

J Hazard Mater

December 2024

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Recent research has revealed an accumulation of microplastics (MPs) in the environment and human tissues, giving rise to concerns about their potential toxicity. The kidney is a vital organ responsible for various physiological functions. Early kidney development is crucial for ensuring proper structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!