Introduction: Although photophysical properties of Radachlorin photosensitizer (PS) were extensively studied in solutions and cells, no data is available on variations of its characteristics upon binding to serum albumins, which are major transporters in blood and nutrients in cell culture media.
Objectives: The primary objective of this study was to analyze changes in photophysical properties of Radachlorin molecules upon their binding to human and bovine serum albumins at different microenvironment properties.
Methods: Experiments were performed using time-resolved fluorescence spectroscopy and fluorescence recovery after photobleaching. Variations in fluorescence spectra and lifetime, fluorescence anisotropy, rotational and translational diffusion of PS molecules upon binding to albumins were studied in normal, basic and acidic conditions and at different concentrations of albumin and PS molecules.
Results: Radachlorin molecules effectively bind to both types of serum albumins, which causes changes in photophysical properties of the PS. A minor red shift of the fluorescence spectrum, an increase in fluorescence lifetime and anisotropy and substantial decrease of translational and rotational mobility of PS molecules were observed upon their binding to albumins. The analysis of rotational diffusion time provided robust evaluation of the bound fraction of PS molecules. Both the highly acidic microenvironment and increase in alcohol concentration above 40% resulted in detachment of PS molecules from albumins. Photophysical properties of Radachlorin in complexes with BSA and HSA were found to be slightly different.
Conclusions: Binding of Radachlorin photosensitizer to either BSA or HSA affects significantly its photophysical properties, which may also vary with microenvironment acidity and alcohol concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2023.130546 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, ultrahigh chemical stability, and extraordinary optoelectronic properties. However, the types of reactions and the availability of monomers for synthesizing linked COFs are considerably limited by the irreversibility of the C═C bond, and the complete π-conjugated structure restricts their in-depth research in hydrophilicity, membrane materials, and proton conductivity. Postsynthetic modification (PSM), which can avoid these problems by incorporating functional moieties into the predetermined framework, provides an alternative way to construct diverse V-2D-COFs.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala - 695 581, India.
Tuning the photophysical response is indispensable in realizing the full potential of phosphors to meet the demands of multifunctional applications, such as solid-state lighting and optical thermometry. Herein, orange-red emission from an Sm-based LiYTeO system was studied for the first time with CIE coordinates of (0.488, 0.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands.
Conjugated polyelectrolytes (CPEs), materials that are defined by a -conjugated backbone and charged ionic functional groups, are frequently prepared through direct polymerization of charged monomer species in aqueous media. This route is, however, often accompanied by labor-intensive work-up procedures, low yields, and ultimately results in materials that are difficult to characterize. To overcome these inconveniences, in this work protection chemistry is applied on sulfonate-functionalized fluorene monomers that are polymerized under standard Suzuki polycondensation conditions to obtain protected donor-acceptor copolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!