To date, remediation, protection, and restoration of contaminated sites is a global concern. The current technologies to restore sediments characterized by heterogeneous characteristics, several pollutants, fine grains, and low hydraulic permeability are poorly effective; hence their remediation is still challenging. A promising approach for the sediment's remediation could be the electrochemical route since it is a not-expensive, effective and noninvasive in situ technology. Electrochemical remediation (ER) is commonly studied under relatively high electric fields (E ≥ 1 V cm) and using costly processing fluids in a three compartments cell aiming to desorb and transport the contaminants into the processing fluids (secondary dangerous effluent). In this work, contaminated marine sediments were electrochemically treated focusing on the insertion of electrodes directly in the sediments and adopting, for the first time for real sediments, low E values (≤ 0.25 V cm) for 4-days period. It was observed that PAHs can be simultaneously transported and degraded in situ preventing the production of a secondary dangerous effluent and reducing the energy consumption. Firstly, clay marine sediments dragged from Capo Granitola Coast (Trapani, Italy) spiked with five PAHs congeners (5PAHs), Hg and As were used as a simplified model matrix and treated to simulate a real case study. A total PAHs removal efficiency of 57% was reached after 96 h of treatment under 0.05 V cm. Then, real polluted marine sediments from Augusta Bay (Syracuse) and Bagnoli-Coroglio Bay (Naples) in the southern Italy were treated as real contaminated sediments to be restored, to validate the proposed approach for real cases. A quite good removal efficiency of PAHs was reached after 96 h of electrochemical treatment coupled with a low energetic consumption due to the rather E values adopted. In addition, it was observed that this approach, under the adopted conditions, is unsuitable for the remediation of Hg and As.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.141009DOI Listing

Publication Analysis

Top Keywords

marine sediments
16
electrochemical remediation
8
sediments
8
processing fluids
8
secondary dangerous
8
dangerous effluent
8
removal efficiency
8
reached 96 h
8
real
6
pahs
5

Similar Publications

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.

View Article and Find Full Text PDF

Temporal development of chlorinated hydrocarbons in the Baltic Sea sediments: Characterization of the pollution maximum.

Sci Total Environ

January 2025

Leibniz Institute for Baltic Sea (IOW), Marine Chemistry Department, Seestraße 15, 18119 Rostock, Germany; IOW, Seestraße 15, 18119 Rostock, Germany. Electronic address:

The Baltic Sea, a semi-enclosed marginal sea with a catchment area four times its size, acts as a sink and continues to show detectable levels of persistent organic pollutants (POPs) in its sediments. This is attributed to the synthesis and industrial use of commercial polychlorinated biphenyls (PCB) products, as well as the widespread use and discharge of certain chlorinated pesticides into the natural environment during the last century. Our study investigates chlorinated hydrocarbon pollutants, the polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolites as well as hexachlorobenzene (HCB) in sediments based on several short sediment cores from different basins covering almost the entire Baltic Sea.

View Article and Find Full Text PDF

Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!