Steel slag is a by-product of steelmaking which has emerged as a potential CO sequestration material due to its high reactivity and abundance. This research investigates the use of steel slag waste for the direct capture of carbon from air and its storage through mineral carbonation. Two abundant wastes, blast-furnace slag (BFS) and ladle slag (LS), were tested for their carbon sequestration potential, and the effects of operational parameters such as reaction time between CO and slag waste, temperature, liquid-solid ratio, and pressure on CO sequestration were determined. Quantitative and qualitative results reveal that much higher CO sequestration was achieved using LS compared to BFS after exposure to CO for 1 day at room temperature. By increasing the exposure time to four days, levels of CO sequestration increased gradually from 2.71% to 4.19% and 23.46%-28.21% for BFS and LS respectively. Increasing the temperature from 20 ± 2 °C to 90 ± 2 °C positively influenced CO sequestration in BFS, resulting in an enhancement from 3.45% to 13.21%. However, the impact on LS was insignificant, with sequestration levels rising from 27.72% to 29.90%. Moreover, better CO sequestration was observed for BFS than LS when the liquid-to-solid ratio increased from 3:1 to 4:1, whereupon the sequestration potential reached approximately 15% for BFS and 30% for LS at 90 ± 2 °C. Meanwhile, higher pressure reduced the sequestration potential of slag. The results of this study suggest that there is potential for scaling up the process to industrial applications and contributing to the reduction of CO emissions in the steelmaking industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119835DOI Listing

Publication Analysis

Top Keywords

steel slag
12
slag waste
12
sequestration potential
12
sequestration
11
slag
9
carbon sequestration
8
mineral carbonation
8
blast-furnace slag
8
ladle slag
8
bfs
6

Similar Publications

Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.

View Article and Find Full Text PDF

Enhancing road performance and sustainability: A study on recycled porous warm mix asphalt.

Sci Total Environ

January 2025

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.

The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.

View Article and Find Full Text PDF

The Use of Microwave Treatment as a Sustainable Technology for the Drying of Metallurgical Sludge.

Materials (Basel)

December 2024

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.

The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.

View Article and Find Full Text PDF

Hydration and carbonation curing of high ferrite clinker (FePC) synthesized using EAF slag.

Low Carbon Mater Green Constr

December 2024

Faculty of Technology, Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300, 90014 Oulu, Finland.

Unlabelled: This study explores the use of Electric Arc Furnace (EAF) slag as a sustainable alternative raw material in cement clinker production. The research demonstrates the synthesis of ferrite-rich clinker using EAF slag, achieving a clinker composition of 47% alite, 32% ferrite, and 20% belite while replacing 20% of clinker raw materials i.e.

View Article and Find Full Text PDF

Enhancement of Zn adsorption on coal fly ash-based geopolymer with steel slag incorporation: Leaching behavior and performance insights.

Environ Pollut

January 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China.

Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!