This work describes the comparison of the catalytic performances of α-MnO nanorods synthesized by a facile hydrothermal approach at varying temperatures (140-200 °C). The structure and morphology of these nanorods were analyzed by XRD, N-physisorption, NH-TPD, Raman, SEM, HRTEM, and XPS. The prepared α-MnO nanorods also performed exceptionally well in the catalytic oxidation of cyclohexanone to dicarboxylic acids under mild reaction conditions. The characterization results conferred that there is a significant influence of hydrothermal temperatures on the textural properties, morphology, and catalytic activity. Notably, the α-MnO nanorods obtained from 180 °C hydrothermal conditions outperformed other catalysts with 77.3 % cyclohexanone conversion and 99 % selectivity towards acid products such as adipic acid (AA), glutaric acid (GA) and succinic acid (SA). The improved catalytic activity may be attributed to the interaction of the bifunctional Mn redox metal centres and surface acidic sites. The present oxidation reaction was found to be a promising eco-benign process with high selectivity for the production of commercially significant carboxylic acids from cyclohexanone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202300589 | DOI Listing |
Environ Res
December 2024
School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:
Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India. Electronic address:
Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, University of Texas at San Antonio, TX, 78249, USA. Electronic address:
Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!