Subgenomic Flaviviral RNAs of Dengue Viruses.

Viruses

Hubei Jiangxia Laboratory, Wuhan 430200, China.

Published: November 2023

Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747610PMC
http://dx.doi.org/10.3390/v15122306DOI Listing

Publication Analysis

Top Keywords

subgenomic flaviviral
8
flaviviral rnas
8
dengue viruses
8
denv sfrnas
8
viral
6
rnas dengue
4
viruses subgenomic
4
sfrnas
4
rnas sfrnas
4
sfrnas produced
4

Similar Publications

Subgenomic flaviviral RNAs and human proteins: exploration of anti-host defense mechanisms.

Comput Struct Biotechnol J

December 2024

Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy.

Flaviviruses pose significant global health threats, infecting over 300 million people annually. Among their evasion strategies, the production of subgenomic flaviviral RNAs (sfRNAs) from the 3' UTR of viral genomes is particularly notable. Utilizing a comprehensive approach with the RAPID algorithm, we analyzed over 300,000 interactions between sfRNAs and human proteins derived from more than 8000 flavivirus genomes, including Dengue, Zika, Yellow Fever, West Nile, and Japanese Encephalitis viruses.

View Article and Find Full Text PDF

The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person.

View Article and Find Full Text PDF

Mosquito-borne flaviviruses including dengue, Zika, yellow fever, and regional encephalitis produce a large amount of short subgenomic flaviviral RNAs during infection. A segment of these RNAs named as xrRNA1 features a multi-pseudoknot (PK)-associated structure, which resists the host cell enzyme (XRN1) from degrading the viral RNA. We investigate how this long-range RNA PK folds in the presence of counterions, specifically in a mix of monovalent (K) and divalent (Mg) salts at physiological concentrations.

View Article and Find Full Text PDF

Unlabelled: Many viruses have evolved structured RNA elements that can influence transcript abundance and translational efficiency, and help evade host immune factors by hijacking cellular machinery during replication. Here, we evaluated the functional impact of sub-genomic flaviviral RNAs (sfRNAs) known to stall exoribonuclease activity, by incorporating these elements into recombinant adeno-associated viral (AAV) genome cassettes. Specifically, sfRNAs from Dengue, Zika, Japanese Encephalitis, Yellow Fever, Murray Valley Encephalitis, and West Nile viruses increased transcript stability and transgene expression compared to a conventional woodchuck hepatitis virus element (WPRE).

View Article and Find Full Text PDF

Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!