In nature, the fruit shapes of many plants resemble avian eggs, a form extensively studied as solids of revolution. Despite this, the hypothesis that egg-shaped fruits are themselves solids of revolution remains unvalidated. To address this, 751 L. var. Naud. fruits were photographed, and the two-dimensional (2D) boundary coordinates of each fruit profile were digitized. Then, the explicit Preston equation (EPE), a universal egg-shape model, was used to fit the 2D boundary coordinates to obtain the estimates of the EPE's parameters of each fruit. Under the hypothesis that egg-shaped fruits are solids of revolution, the fruit volumes were estimated using the solid of revolution formula based on the estimated EPE's parameters. To test whether the fruits are solids of revolution, the fruit volumes were measured by using a graduated cylinder and compared with the estimated volumes using the solid of revolution formula. The EPE was demonstrated to be valid in describing the 2D profiles of var. fruits. There was a significant correlation between the measured fruit volumes using the graduated cylinder and the estimated fruit volumes using the solid of revolution formula based on the estimated EPE's parameters. Acknowledging potential measurement errors, particularly fruit fuzz causing air bubbles during volume measurements, we recognize slight deviations between measured volumes and estimated values. Despite this, our findings strongly suggest that var. fruits are solids of revolution. This study contributes insights into the evolutionary aspects of fruit geometries in plants with egg-shaped fruits and introduces a practical tool for non-destructively calculating fruit volume and surface area based on photographed 2D fruit profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747953 | PMC |
http://dx.doi.org/10.3390/plants12244186 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Theories predicted that shear promotes desorption, but due to the presence of factors such as aggregation effects, it is difficult to observe how shear influences the adsorption and desorption of individual protein molecules. In this study, we employed high-throughput single-molecule tracking and molecular dynamics simulations to investigate how shear flow affects the adsorption kinetics of plasma proteins (including human serum albumin, immunoglobulin G, and fibrinogen) at solid-liquid interfaces. Over the studied shear rate range of 0 - 10 s, shear stress did not trigger the protein desorption.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Engineering and Technology, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, Brazil. Electronic address:
This study focused on evaluating the fractionation of pequi oil and modeling the process using solid-liquid equilibrium (SLE) theory. The pequi oil was comprehensively characterized, including its fatty acid (FA) and acylglycerol (AG) profiles, moisture content, acidity, carotenoid levels, and thermal behavior. Low acidity and partial acylglycerols content, along with its TAG profile (mainly OOP, POP, OOO and PPP) and melting behavior proved that, in fact, this oil is quite suitable for fractionation.
View Article and Find Full Text PDFBiomolecules
November 2024
Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan.
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface.
View Article and Find Full Text PDFNat Med
January 2025
Department of Medicine-Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFOrthop Surg
January 2025
Department of Orthopaedic and Traumatology, Trabzon Kanuni Training and Research Hospital, Trabzon, Turkey.
Objective: Despite several surgical options, there has yet to be a consensus on the best treatment for femoral neck fracture (FNF) due to higher complication rates compared to other bone fractures. This study aims to examine the possible consequences and solution suggestions of changing screws during surgery for various reasons in FNF surgical treatment from a biomechanical perspective.
Method: FNF and treatment materials were analyzed biomechanically using a package program based on the finite element method (FEM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!