This review article aims to present an overview regarding the volatile compounds in different scented species of and their biological activities, immunomodulatory activity, cytotoxic activity, high larvicidal activity and ethnopharmacological uses. Although the genus includes many species, we focused only on the scented ones, with the potential to be used in different domains. essential oil showed great properties as antioxidant activity, antibacterial activity (against , or strains) and antifungal activity (against many fungi including sp.), the responsible compounds for these properties being tannins, flavones, flavonols, flavonoids, phenolic acids and coumarins. Due to the existence of bioactive constituents in the chemical composition of fresh leaves, roots, or flowers of sp. (such as monoterpenoid compounds-citronellol, geraniol, linalool, and flavonoids-myricetin, quercetin and kaempferol), this species is still valuable, the bio-compounds representing the base of innovative substitutes in food processing industry, nutraceuticals, or preventive human or veterinary medicine (substitute of antibiotics). Highlighting the volatile chemical composition and properties of this scented plant aims to rediscover it and to emphasize the vast spectrum of health-promoting constituents for a sustainable approach. Future research directions should point to the application of plant biotechnology with a significant role in conservation strategy and to stimulate commercial interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748180 | PMC |
http://dx.doi.org/10.3390/plants12244123 | DOI Listing |
Nat Prod Res
January 2025
Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China.
The leaves of (Batal) Iljinsk., a plant native to China that has long been used in traditional Chinese medicine to treat diabetes. It remains to be determined what chemical constituents are responsible for this effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Division, Biomedical Technology Wing, 695011, Thiruvananthapuram, INDIA.
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!