The research purpose was to investigate the effects and the underlying molecular mechanisms of bovine bone gelatin peptides (BGP) on myocardial hypertrophy in spontaneously hypertensive rats (SHR). BGP relieved myocardial hypertrophy and fibrosis in SHR rats in a dose-dependent manner by reducing the left ventricular mass index, myocardial cell diameter, myocardial fibrosis area, and levels of myocardial hypertrophy markers (atrial natriuretic and brain natriuretic peptide). Label-free quantitative proteomics analysis showed that long-term administration of BGP changed the left ventricle proteomes of SHR. The 37 differentially expressed proteins in the high-dose BGP group participated in multiple signaling pathways associated with cardiac hypertrophy and fibrosis indicating that BGP could play a cardioprotective effect on SHR rats by targeting multiple signaling pathways. Further validation experiments showed that a high dose of BGP inhibited the expression of phosphoinositide 3-kinase (Pi3k), phosphorylated protein kinase B (p-Akt), and transforming growth factor-beta 1 (TGF-β1) in the myocardial tissue of SHR rats. Together, BGP could be an effective candidate for functional nutritional supplements to inhibit myocardial hypertrophy and fibrosis by negatively regulating the TGF-β1 and Pi3k/Akt signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745459 | PMC |
http://dx.doi.org/10.3390/nu15245021 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Institute of Clinical Medicine, V.N. Vinogradov Faculty Therapeutic Clinic, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia.
Background: Myocardial disease is an important component of the wide field of cardiovascular disease. However, the phenomenon of multiple myocardial diseases in a single patient remains understudied.
Aim: To investigate the prevalence and impact of myocarditis in patients with genetic cardiomyopathies and to evaluate the outcomes of myocarditis treatment in the context of cardiomyopathies.
Antioxidants (Basel)
January 2025
Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
Arterial hypertension has a high prevalence in the population and is considered both a cardiovascular disease and an important risk factor for the development of other cardiovascular diseases. Tea consumption shows antihypertensive effects due to its composition in terms of bioactive substances such as flavan-3-ols and xanthines. The aim of this study was to assess the possible beneficial effects of two tea extracts, one of white tea (ADM White Tea; WTE) and another one composed of a mixture of black tea and green tea (ADM Tea Complex; CTE), on the cardiovascular alterations induced by angiotensin II (AngII) infusion in mice.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland.
Cardiac magnetic resonance (CMR) allows for analysis of cardiac function and myocardial tissue characterization. Increased left ventricular mass (LVM) is an independent predictor of cardiovascular events; however, the diagnosis of left ventricular hypertrophy and its prognostic value strongly depend on the LVM indexation method. Evaluation of the quantity and distribution of late gadolinium enhancement assists in clinical decisions on diagnosis, cardiovascular assessment, and interventions, including the placement of cardiac implantable electronic devices and the choice of an optimal procedural approach.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Cardiology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal.
Hypertrophic cardiomyopathy (HCM) is a heterogeneous cardiac disease and one of its major challenges is the limited accuracy in stratifying the risk of sudden cardiac death (SCD). Positron emission tomography (PET), through the evaluation of myocardial blood flow (MBF) and metabolism using fluorodeoxyglucose (FDG) uptake, can reveal microvascular dysfunction, ischemia, and increased metabolic demands in the hypertrophied myocardium. These abnormalities are linked to several factors influencing disease progression, including arrhythmia development, ventricular dilation, and myocardial fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!