Challenges and Opportunities in the Process Development of Chimeric Vaccines.

Vaccines (Basel)

Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.

Published: December 2023

Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747103PMC
http://dx.doi.org/10.3390/vaccines11121828DOI Listing

Publication Analysis

Top Keywords

chimeric vaccines
20
process development
8
development chimeric
8
vaccines
8
chimeric
5
challenges opportunities
4
process
4
opportunities process
4
vaccines vaccines
4
vaccines integral
4

Similar Publications

The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.

View Article and Find Full Text PDF

The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.

View Article and Find Full Text PDF

CD40 Ligand Potentiates Immunogenecity of Subunit Vaccine Candidate in a Murine Model.

Curr Issues Mol Biol

January 2025

Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.

(Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the cellular and humoral immune responses to vaccines. In this study, the CD40L peptide was fused to the C-terminus of the chimeric P97R1P46P42 protein by genetic engineering using the pFastBac Dual vector.

View Article and Find Full Text PDF

Engineering of a lysosomal-targeted GAA enzyme.

Protein Eng Des Sel

January 2025

Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.

Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.

View Article and Find Full Text PDF

Evolving Immunotherapy Strategies in Gastrointestinal Neuroendocrine Neoplasms.

Curr Treat Options Oncol

January 2025

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Treatment for neuroendocrine neoplasms (NENs) is tailored to the tumor's site of origin, grade, and differentiation. NENs are categorized into two main types: well-differentiated neuroendocrine tumors (NETs), which tend to grow more slowly and are less aggressive, and poorly differentiated neuroendocrine carcinomas (NECs), which are highly aggressive and harder to treat. Treatment options for NETs range from somatostatin analogues and mTOR inhibitors to peptide receptor radionuclide therapy (PRRT) with Lutetium-177 dotatate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!