IDF-11774 Induces Cell Cycle Arrest and Apoptosis by Inhibiting HIF-1α in Gastric Cancer.

Pharmaceutics

Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.

Published: December 2023

AI Article Synopsis

Article Abstract

Hypoxia-inducible factor-1 alpha (HIF-1α) is a regulatory factor of intracellular oxygen supersession. The expression or increased activity of HIF-1α is closely related to various human cancers. Previously, IDF-11774 was demonstrated to inhibit HSP70 chaperone activity and suppress the accumulation of HIF-1α. In this study, we aimed to determine the effects of IDF-11774 on gastric cancer cell lines. Treatment with IDF-11774 was found to markedly decrease the proliferation, migration, and invasion of the gastric cancer cell lines. Furthermore, the phosphorylation levels of extracellular signal-regulated kinase 1/2, p38, and Jun N-terminal kinase in the mitogen-activated protein kinase signaling pathways were markedly increased in a dose-dependent manner, ultimately promoting apoptosis via the induction of cell cycle arrest. Our findings indicate that HIF-1α inhibitors are potent drugs for the treatment of gastric cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748108PMC
http://dx.doi.org/10.3390/pharmaceutics15122772DOI Listing

Publication Analysis

Top Keywords

gastric cancer
16
cell cycle
8
cycle arrest
8
cancer cell
8
cell lines
8
hif-1α
5
idf-11774
4
idf-11774 induces
4
cell
4
induces cell
4

Similar Publications

Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.

Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Trophoblast glycoprotein (TPBG) plays a significant part in the growth of specific cancers, yet its connection to gastric cancer (GC) remains uncertain. This research seeks to analyse the fluctuation in TPBG levels in GC and evaluate how TPBG expression relates to the prognosis of GC patients. TPBG expression in GC and normal gastric tissues was investigated in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, further extracting the immunohistochemistry images from HPA database and validating by Western blot.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Background: Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis.

Methods: The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!