The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748172 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15122766 | DOI Listing |
Toxins (Basel)
December 2024
National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX 78363, USA.
King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil.
Spiders of the genus represent a public health problem in Brazil due to the severity of the cutaneous and systemic effects that may result from their bite. In the systemic form of loxoscelism, hemolytic anemia, thrombocytopenia, and disseminated intravascular coagulation can occur. Despite the seriousness of accidents, the venom of some species has not yet been properly characterized considering these hemotoxic effects, such as that of , , and .
View Article and Find Full Text PDFToxins (Basel)
December 2024
Immunopathology Laboratory, Butantan Institute, São Paulo 05585-090, Brazil.
Jararhagin-C (JarC) is a protein from the venom of consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Poison Control Center, The University of Arizona College of Pharmacy, Tucson, AZ 85724, USA.
The onset, progression, and severity of pain following rattlesnake envenomation are highly variable between patients. Pain can be severe and persistent, seemingly refractory to opioid analgesics. The ability of antivenom to directly relieve pain has not been well studied.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake , focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!