The coating of liposomes with polyethyleneglycol (PEG) has been extensively discussed over the years as a strategy for enhancing the in vivo and in vitro stability of nanostructures, including doxorubicin-loaded liposomes. However, studies have shown some important disadvantages of the PEG molecule as a long-circulation agent, including the immunogenic role of PEG, which limits its clinical use in repeated doses. In this context, hydrophilic molecules as carbohydrates have been proposed as an alternative to coating liposomes. Thus, this work studied the cytotoxicity and preclinical antitumor activity of liposomes coated with a glycosyl triazole glucose (GlcL-DOX) derivative as a potential strategy against breast cancer. The glucose-coating of liposomes enhanced the storage stability compared to PEG-coated liposomes, with the suitable retention of DOX encapsulation. The antitumor activity, using a 4T1 breast cancer mouse model, shows that GlcL-DOX controlled the tumor growth in 58.5% versus 35.3% for PEG-coated liposomes (PegL-DOX). Additionally, in the preliminary analysis of the GlcL-DOX systemic toxicity, the glucose-coating liposomes reduced the body weight loss and hepatotoxicity compared to other DOX-treated groups. Therefore, GlcL-DOX could be a promising alternative for treating breast tumors. Further studies are required to elucidate the complete GlcL-DOX safety profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747952PMC
http://dx.doi.org/10.3390/pharmaceutics15122751DOI Listing

Publication Analysis

Top Keywords

liposomes
9
preclinical antitumor
8
liposomes coated
8
coating liposomes
8
antitumor activity
8
breast cancer
8
glucose-coating liposomes
8
peg-coated liposomes
8
glcl-dox
5
vitro preclinical
4

Similar Publications

Objective: This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy.

Methods: Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO).

View Article and Find Full Text PDF

Combinational therapy to treat triple-negative breast cancer (TNBC) by concomitantly influencing different cellular pathways has attracted attention recently. In the present study, co-delivery of dasatinib and miR30a by means of CRGDK-targeted lipopolyplexes was conducted to enhance the inhibition of cell proliferation and migration. For this purpose, we condensed the cationic copolymer poly(1-vinylimidazole--2-aminoethyl methacrylate) with miR-30a to form polyplexes.

View Article and Find Full Text PDF

spp. are ubiquitous, and people are frequently exposed to their spores in the environment and hospital settings. Despite frequent inhalation of the spores, infection is infrequent in humans, except in immunosuppressed hosts.

View Article and Find Full Text PDF

Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!