The permeability of the oral or nasal mucosa is higher than that of the skin. Mucosa permeability depends mainly on the thickness and keratinization degree of the tissues. Their permeability barrier is conditioned by the presence of certain lipids. This work has the main aim of reinforcing the barrier effect of oral mucosa with a series of formulations to reduce permeation. Transmembrane water loss of different formulations was evaluated, and three of them were selected to be tested on the sublingual mucosa permeation of drugs. Caffeine, ibuprofen, dexamethasone, and ivermectin were applied on porcine skin, mucosa, and modified mucosa in order to compare the effectiveness of the formulations. A similar permeation profile was obtained in the different membranes: caffeine > ibuprofen~dexamethasone > ivermectin. The most efficient formulation was a liposomal formulation composed of lipids that are present in the skin stratum corneum. Impermeability provided by this formulation was notable mainly for the low-molecular-weight compounds, decreasing their permeability coefficient by between 40 and 80%. The reinforcement of the barrier function of mucosa provides a reduction or prevention of the permeation of different actives, which could be extrapolated to toxic compounds such as viruses, contaminants, toxins, etc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747729 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15122698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!