1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2-1,2,3-triazole-4-carboxylic acid () and its anionic form () was characterized by means of the B3LYP, M06-2X and MP2 quantum chemical methods, optimizing their monomer, cyclic dimer and stacking forms using the Gaussian16 program package. The molecular structure was found to be slightly out of plane. The good agreement between the IR and Raman bands experimentally observed in the solid state with those calculated theoretically confirms the synthesized structures. All of the bands were accurately assigned according to functional calculations (DFT) in the monomer and dimer forms, together with the polynomic scaling equation procedure (PSE). Therefore, the effect of the substituents on the triazole ring and the effect of the chlorine atom on the molecular structure and on the vibrational spectra were evaluated through comparison with its non-substituted form. Through molecular docking calculations, it was evaluated as to how molecule interacts with few amino acids of the MMP-2 metalloproteinase receptor, using Sybyl-X 2.0 software. Thus, the relevance of triazole scaffolds in established hydrogen bond-type interactions was demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747663 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15122686 | DOI Listing |
Anal Chem
January 2025
Institut de Recherche en Santé, Environnement et Travail (Irset)─Inserm─EHESP, UMR_S 1085, Université de Rennes, 9 av. du Professeur Léon Bernard, F-35042 Rennes, France.
Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies.
View Article and Find Full Text PDFJ Med Chem
January 2025
Chemical Biology Section, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States.
Autophagy, a recycling process in eukaryotes, contributes to tumor growth and metastasis by alleviating cellular stress and facilitating survival and chemoresistance. The development of small molecules that selectively inhibit this pathway has proven challenging and is required to determine if autophagy inhibition can be harnessed as an effective therapeutic strategy in cancer. Compound 19 was previously identified as a selective autophagy inhibitor that targets the ATG14L-Beclin1 protein-protein interaction, which regulates the formation, localization, and function of VPS34 Complex I to initiate autophagy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.
The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.
View Article and Find Full Text PDFPLoS One
January 2025
Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh.
Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Department of Molecular Biology and Genetics, Hitit University, Corum, Türkiye.
The norepinephrine transporter (NET) is a key regulator of noradrenergic neurotransmission and homeostasis, regulating the norepinephrine levels in the brain and peripheral tissues. hNET is a major target in neuropsychiatric disorders such as major depressive disorder, autonomic dysfunction, and attention deficit hyperactivity disorder (ADHD). The human norepinephrine transporter gene (, ) contains 504 missense single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!