The creation of antibacterial nanocomposites that provide prolonged release of encapsulated drugs is of great interest for various fields of medicine (dentistry, tissue regeneration, etc.). This article demonstrates the possibility of creating such nanocomposites based on sodium alginate and drug-templated mesoporous silica nanocontainers (MSNs) loaded with two bioactive substances. Herein, we thoroughly study all stages of the process, starting with the synthesis of MSNs using antiseptic micelles containing the hydrophobic drug quercetin and ending with assessing the activity of the resulting composites against various microorganisms. The main emphasis is on studying the quercetin solubilization in antiseptic micelles as well as establishing the relationship between the conditions of MSN synthesis and micelle morphology and capacity. The effect of medium pH on the release rate of encapsulated drugs is also evaluated. It was shown that the MSNs contained large amounts of encapsulated drugs and that the rate of drug unloading depended on the medium pH. The incorporation of such MSNs into the alginate matrix allowed for a prolonged release of the drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748164PMC
http://dx.doi.org/10.3390/pharmaceutics15122675DOI Listing

Publication Analysis

Top Keywords

encapsulated drugs
12
mesoporous silica
8
silica nanocontainers
8
prolonged release
8
antiseptic micelles
8
antibacterial bionanocomposites
4
bionanocomposites based
4
based drug-templated
4
drug-templated bifunctional
4
bifunctional mesoporous
4

Similar Publications

Ulcerative colitis, a chronic inflammatory condition of the colon, requires precise and targeted treatment, and polysaccharides, with their pH responsiveness and biodegradability, offer an innovative approach for colon-specific drug delivery. This study aims to develop a highly precise drug delivery system with enhanced therapeutic and targeting efficiency for ulcerative colitis, focusing on the preparation, optimisation, and evaluation of dual cross-linked mesalamine-loaded sericin-pectin (DSPs) micro-beads. These beads utilise the pH-responsive and microflora biodegradability properties of polysaccharides for targeted colon delivery, employing the Response Surface Methodology.

View Article and Find Full Text PDF

Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a key biomarker for diagnosing inflammatory responses in diseases like influenza and COVID-19. An electrochemiluminescence (ECL) biosensor has been constructed for signal enhancement in SAA detection by encapsulating 4,4',4″,4‴-(1,3,6,8-pyrenetetrayl) tetrakis-benzoic acid (TBAPy) into liposomes. Such biomimetic encapsulation shields the biologically important membrane to avoid aggregation of TBAPy and prevents quenching.

View Article and Find Full Text PDF

Inhalable biohybrid microrobots: a non-invasive approach for lung treatment.

Nat Commun

January 2025

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.

Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes.

View Article and Find Full Text PDF

Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson's disease via anti-neuroinflammation.

Int J Biol Macromol

January 2025

Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China. Electronic address:

Currently, the clinical drugs for Parkinson's disease (PD) only focus on motor symptoms, while non-motor symptoms like depression are usually neglected. Even though, the efficacy of existing neurotherapeutic drugs is extremely poor which is due to the blood brain barrier (BBB). Therefore, a biomimetic polydopamine carbon dots (PDA C-dots) at 2-4 nm was synthesized, while exosomes from macrophages were applied to encapsulate PDA C-dots for improving their BBB-crossing ability and inflammation-targeting effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!