AI Article Synopsis

Article Abstract

Phenyl polyhedral oligomeric silsesquioxane (POSS) is modified onto the GO surface by using the strong π-π coupling between a large number of benzene rings at the end of the phenyl POSS structure and the graphite structure in the GO sheet, realizing the non-covalent functionalization of GO (POSS-GO). The POSS-GO-reinforced EP (POSS-GO/EP) composite material is prepared using the casting molding process. The surface morphology of GO before and after modification and its peel dispersion in EP are examined. Furthermore, the mechanical properties, cross-sectional morphology, and reinforcement mechanism of POSS-GO/EP are thoroughly examined. The results show that the cage-like skeleton structure of POSS is embedded between the GO layers, increasing the spacing between the GO layers and leading to a steric hindrance effect, which effectively prevents their stacking and aggregation and improves the dispersion performance of GO. In particular, the 0.4 phr POSS-GO/EP sample shows the best mechanical properties. This is because, on the one hand, POSS-GO is uniformly dispersed in the EP matrix, which can more efficiently induce crack deflection and bifurcation and can also cause certain plastic deformations in the EP matrix. On the other hand, the POSS-GO/EP fracture cross-section with a stepped morphology of interlaced "canine teeth" shape is rougher and more uneven, leading to more complex crack propagation paths and greater energy consumption. Moreover, the mechanical meshing effect between the rough POSS-GO surface and the EP matrix is stronger, which is conducive to the transfer of interfacial stress and the strengthening and toughening effects of POSS-GO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748068PMC
http://dx.doi.org/10.3390/polym15244726DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
non-covalent functionalization
8
functionalization graphene
4
graphene oxide
4
poss
4
oxide poss
4
poss improve
4
mechanical
4
improve mechanical
4
properties epoxy
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!