Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747532PMC
http://dx.doi.org/10.3390/polym15244652DOI Listing

Publication Analysis

Top Keywords

protein hydrogels
12
biomedical applications
8
hydrogels
6
stimuli-responsive protein
4
hydrogels design
4
design properties
4
properties biomedical
4
applications protein-based
4
protein-based hydrogels
4
hydrogels considered
4

Similar Publications

This study aims to build an optimal drug delivery system by manufacturing and evaluating a hydrogel contact lens using Tretinoin (ATRA) and protein nanoparticles to improve the drug delivery system as an ophthalmic medical contact lens. To evaluate the optical and physical properties of the manufactured lens, the spectral transmittance, refractive index, water content, contact angle, AFM, tensile strength, drug delivery, and antibacterial properties were analyzed. The contact lens was manufactured to contain ATRA and bovine serum albumin (BSA) in different ways, and the results confirmed that A, B, and C each had different physical properties.

View Article and Find Full Text PDF

Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).

View Article and Find Full Text PDF

Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix.

View Article and Find Full Text PDF

Pharmacokinetics-Based Design of Subcutaneous Controlled Release Systems for Biologics.

CPT Pharmacometrics Syst Pharmacol

January 2025

Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California, USA.

Protein therapeutics have emerged as an exceedingly promising treatment modality in recent times but are predominantly given as intravenous administration. Transitioning to subcutaneous (SC) administration of these therapies could significantly enhance patient convenience by enabling at-home administration, thereby potentially reducing the overall cost of treatment. Approaches that enable sustained delivery of subcutaneously administered biologics offer further advantages in terms of less frequent dosing and better patient compliance.

View Article and Find Full Text PDF

Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!