A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids.

Pharmaceuticals (Basel)

Laboratorio de Quimioinformática y Diseño de Fármacos, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico.

Published: December 2023

Among the biological targets extensively investigated to improve inflammation and chronic inflammatory conditions, cyclooxygenase enzymes (COXs) occupy a prominent position. The inhibition of these enzymes, essential for mitigating inflammatory processes, is chiefly achieved through Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). In this work, we introduce a novel method-based on computational molecular docking-that could aid in the structure-based design of new compounds or the description of the anti-inflammatory activity of already-tested compounds. For this, we used eight crystal complexes (four COX-1 and COX-2 each), and each pair had a specific NSAID: Celecoxib, Meloxicam, Ibuprofen, and Indomethacin. This selection was based on the ligand selectivity towards COX-1 or COX-2 and their binding mode. An interaction profile of each NSAID was compiled to detect the residues that are key for their binding mode, highlighting the interaction made by the Me group. Furthermore, we rigorously validated our models based on structural accuracy (RMSD < 1) and (R > 70) using eight NSAIDs and thirteen compounds with IC values for each enzyme. Therefore, this model can be used for the binding mode prediction of small and structurally rigid compounds that work as COX inhibitors or the prediction of new compounds that are designed by means of a structure-based approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747940PMC
http://dx.doi.org/10.3390/ph16121688DOI Listing

Publication Analysis

Top Keywords

binding mode
16
cox-1 cox-2
12
mode prediction
8
compounds
5
computational method
4
binding
4
method binding
4
mode
4
prediction cox-1
4
cox-2 inhibitors
4

Similar Publications

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:

Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells.

View Article and Find Full Text PDF

Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.

View Article and Find Full Text PDF

Background And Aims: Sex hormones and sex hormone-binding globulin (SHBG) have been confirmed to involve in the pathophysiology of functional gastrointestinal disorders (FGIDs), including irritable bowel syndrome (IBS) and functional dyspepsia (FD). However, causal associations have not yet been investigated. Utilizing data from Genome-wide association studies, we conducted bidirectional two-sample mendelian randomization (MR) analyses to assess the causal relationships between sex hormones, SHBG and FGIDs.

View Article and Find Full Text PDF

Fungal lectins show differential antiproliferative activity against cancer cell lines.

Int J Biol Macromol

December 2024

BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", University of La Laguna, La Laguna, Spain.

Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!